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 ABSTRACT 

This paper surveys alternative ways of expressing the Gini mean difference and the Gini coefficient. 

It adds some new representations and new interpretations of Gini's mean difference and the Gini 

coefficient. All in all, there are over a dozen alternative ways of writing the Gini,  which can be 

useful in developing applications to Gini-based statistics.  
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 More than a Dozen Alternative Ways of Spelling Gini 

 

Gini's mean difference (GMD) as a measure of variability has been known for over a century.2  It 

was `rediscovered' several times (see, for example, David, 1968; Jaeckel, 1972; Jurečková, 1969; 

Olkin and Yitzhaki, 1992; Simpson, 1948) which means that it had been used by investigators who 

did not know that they were using a statistic, which was a version of the GMD. One possible 

explanation of this phenomenon is the large number of seemingly unrelated presentations of the 

Gini's mean difference (and other statistics that are derived from it), which makes it hard to identify 

which Gini one is dealing with. Being able to identify a Gini enables the investigator to derive 

additional properties of the statistic at hand and rewrite it in an alternative, more user-friendly way. 

It also enables the investigator to find new interpretations of the Gini and of Gini- related statistics. 

One must be familiar with alternative definitions whenever one is interested in extension of the 

statistics at hand: as will become obvious later, some definitions are more amenable to such 

extension. Unfortunately, the alternative representations are scattered throughout many papers, 

spread over a long period and many areas of interest, and are not readily accessible.3  

                                                 
    2 For a description of its early development - see Dalton (1920);  David (1981, p. 192);  Gini 
(1921, 1936), and several entries in Harter (1978). Unfortunately, I am unable to survey the Italian 
literature, which includes, among others, Gini's (1912) original presentation of the index. A 
comprehensive survey of this literature can be found in Giorgi (1990, 1993).   

    3This phenomenon seems to be a characteristic of the literature on the GMD from its early 
development. Gini (1921) argues " Probably these papers have escaped Mr. Dalton's attention 
owing to the difficulty of access to the publications in which they appeared." (Gini, 1921, p. 124).     



 

 

 

 The aim of this paper is to survey alternative presentations of the GMD. As the survey is 

restricted to quantitative random variables, the literature on diversity, which is mainly concerned 

with categorical data, is not covered.4  For some purposes, the continuous formulation is more 

convenient, yielding insights that are not as accessible when the random variable is discrete. The 

continuous formulation is also preferred because it can be handled using calculus.5 To avoid 

problems of existence, only continuous distributions with finite first moment will be considered. 

The presentation is also restricted to population parameters, ignoring different types of estimators. It 

is assumed that sample values substitute for population parameters in the estimation. As far as I 

know, these alternative representations cover all known cases but I would not be surprised if others 

turn up. The different formulations explain why the GMD can be applied in so many different fields 

and given so many different interpretations. 

 The Gini coefficient is the GMD divided by twice the mean income. Actually, it is the most 

well-known member of the Gini family and it is mainly used to measure income inequality. The 

relationship between the two is similar to that between variance and the coefficient of variation. 

Hence, one need only derive the GMD, and then easily convert the representation into a Gini 

coefficient. Some additional properties relevant to the Gini coefficient will be added later. It is 

worth mentioning that reference to "variability" or "risk" (most common among statisticians and 

                                                 
    4For use of the GMD in categorical data, see the bibliography in Rao (1982) and  Dennis et al. 
(1979) in biology, Lieberson (1969) in sociology; Bachi (1956) in linguistic homogeneity , and 
Gibbs and Martin (1962) for industry diversification. 

    5 One way of writing the Gini is based on vectors and matrices. This form is clearly restricted to 
discrete variables and hence it is not covered in this paper. For a description of the method see 
Silber (1989).    



 

 

 

finance specialists) implies use of the Gini mean difference (GMD), whereas reference to 

"inequality" (usually in the context of income distribution) implies use of Gini coefficient. The 

difference is not purely semantic or even one of plain arithmetic: it reveals a distinction in one's 

definition of an increase in variability (inequality).  To see the difference, consider a distribution 

bounded by [a,b] and ask what is the most variable (unequal) distribution. If the most variable 

distribution is defined as the one with half of the population at a and the other half at b then the 

GMD (or the variance) is the appropriate index of variability. If the most unequal distribution is 

defined as the one with almost all the population concentrated at a and a tiny fraction at b, (all 

income in the hand of one person), then the appropriate index is the Gini coefficient (or the 

coefficient of variation).  

 The structure of the paper is as follows: The next section derives the alternative 

presentations of the GMD; the third section adds some properties specific to the Gini coefficient. 

The fourth section investigates the similarity with variance. The paper concludes with a section 

indicating areas of further research. 

 

 

2. Alternative Presentations of GMD 

There are four types of formulae for GMD, depending on the elements involved. The first type is 

based on absolute values, the second relies on integrals of cumulative distributions, the third on 

covariances, and the forth on Lorenz curves (or integrals of first moment distributions).  

 Let X1, X2 be i. i. d. continuous random variables with F(x) representing the cumulative 



 

 

 

distribution and f(x) the density function. It is assumed that the expected value,  µ, exists; hence 

limt→-∞ tF(t) = limt→∞ t[1-F(t)] = 0. 

   

2.a: Formulations based on absolute values 

The original definition of the GMD is the expected difference between two realizations of i.i.d. 

variables. That is, the GMD in the population is: 

              Γ = E {|X1 - X2|} ,        (1) 

which can be given the following interpretation: Consider an investigator who is interested in 

measuring the variability of a certain property in the population. He draws a random sample of two 

observations and records the difference between them. Repeating the sampling and averaging the 

differences an infinite number of times yields the GMD.6 Hence, the GMD can be interpreted as the 

expected difference between two randomly drawn members of the population.  

 A variant of (1) is:  

           Γ = E { E{|X1 - q|}|q = X2} .   (2) 

The term E{X1 - q} is the absolute deviation of X1 from q, where q is a quantile of X. The GMD is 

therefore the expected value of absolute deviations from quantiles of the random variable. In other 

words, the GMD is the average value of all possible absolute deviations of a variable from itself.  

 A slightly different set of presentations relies on the following identities: Let x, y be two 

variables. then  

                                                 
    6 See also Pyatt (1976) for an interesting interpretation based on a view of the Gini coefficient as 
the equilibrium of a game.  



 

 

 

        |x- y| = (x + y) - 2 Min{x,y} = Max{x,y} - Min{x,y} = 

                     = 2 Max{x,y} - (x + y) .        (3) 

Using the left part of (3), GMD turns into 

           Γ = 2 µ - 2 E {Min { X1 , X2} } ,   (4) 

that is, the GMD is twice the difference between the expected values of one random draw and the 

minimum of two random draws from the distribution. Alternatively, we can use the middle of (3) to 

write  

           Γ =  E {Max{X1, X2}} - E {Min{X1, X2}} .   (5) 

Here, the interpretation of the GMD is the expected difference between the maximum of two 

random draws and the minimum of two random draws. Finally, one can use the right hand side of 

(3) to write the GMD as twice the expected value of the maximum of two random draws minus the 

expected value of one random draw. These presentations can be easily extended to involve more 

than two draws, leading to the extended Gini (Yitzhaki, 1983). They can be useful whenever the 

preferred interpretation of the GMD is related to extreme value theory.  

 Another branch can be derived from (2). One can write 

     E {|X - q|} = E {(q-X) I(X < q) + (X-q) I(X > q)} ,      (6) 

where I(A) is the indicator function (value 1 if A is true and zero otherwise), and q is a constant 

(quantile of the distribution). Since for every q there exists a θ so that θ = F(q), (6) can be written as 

a minimization problem: 

       E|X - q| = Mins E{θ |X- s| I(s > X)  + (1-θ) |X - s| I(X > s)} .      (7) 

Let s* be the solution of the right hand of (7). Then q=s*, which explains equation (7). The right 



 

 

 

hand side of (7) is the fundamental equation used in quantile regression (See Koenker and Basset, 

1978; and Buchinsky, 1991). By the probability integral transformation (DeGroot, 1975, p. 127), 

the cumulative distribution of any random variable is uniformly distributed. Hence one can rewrite 

the GMD as: 

           Γ = 0∫1  [ Minq E{θ |X - q| I(q > X)  + (1-θ) |X - q| I(X > q)}] dθ , (8) 

which is the expected value of all the possible target functions in quantile regressions. Using the 

equivalence between equations (8) and (15) (shown later), it is possible to show that equation (8) is 

the target function of the regression in (Jurečková, 1969), see Olkin and Yitzhaki, 1992).    

    

2.b: Integrals of cumulative distributions 

This section focuses on presentations of the GMD that are based on integrals of the cumulative 

distribution. The basic equation needed to develop such presentations is an alternative expression 

for the expected value of a distribution. Let X be distributed in the range [a,∞); then the expected 

value of X is equal to7: 

     µ = a + a∫∞[1 - F(x)] dx .     (9) 

Proof: The familiar definition of expected value is µ = a∫∞ xf(x) dx. Using integration by parts with 

u = x and v = - [1 - F(x)] yields equation (9).  

 Using (9), and the fact that the cumulative distribution of the minimum of two i. i. d. 

variables is 1 - [1 - F(x)]2, we can rewrite (4) as: 

                                                 
    7The GMD is based on the difference of two such formulae, so that this restriction does not affect 
the GMD. See Dorfman (1979).  



 

 

 

              Γ = 2 ∫ [1-F(t)] dt - 2 ∫ [1 - F(t)]2 dt ,                      (10) 

and by combining the two integrals, as: 

        Γ = 2 ∫ F(t) [1 - F(t)] dt .                    (11) 

Equation (11) can be given an interesting interpretation. Let Fn(x) be the empirical cumulative 

distribution of X based on a sample of n observations. Then Fn(x) is the mean of n i.i.d. binomial 

random variables with values one and zero and p=F(x). The variance of Fn(x) is equal to F(x) [1 - 

F(x)]/n (Serfling, 1980, p. 57)  and the GMD can be interpreted as n multiplied by the sum over X 

of the variances of Fn(X). A similar (and older) variant of this formula is  

        Γ =E{ ∫ [Fn(x) - F(x)]2dx} ,     (12) 

which is the original Cramer - Von Mises - Smirnov criterion for testing goodness of fit of a 

distribution.8 In some sense, (12) can be viewed as a ‘dual’ approach to central moments of a 

distribution. Central moments are linear in the probabilities and power functions of deviations of 

the variate from its expected value. In the GMD, the power function is applied to the deviation of 

the cumulative distribution from its expected value while the linearity is applied to the variate. 

Hence the ‘duality’.9   

                                                 
    8This formula, which is a special case of the statistic suggested by Cramer, plays an important 
role in his composition of elementary errors although it seems that he did not identify the implied 
GMD (see Cramer, 1928, pp. 144-147). Von-Mises (1931) made an  independent equivalent 
suggestion and developed additional properties of the statistics. Smirnov (1937) modified the 
statistics to 
              w2 = n ∫ [Fn(x) - F(x)]2dF(x) . 
Changing the integration from dx to dF(x) eliminates the connection to the GMD and creates a 
distribution-free statistic. The above description of the non-English literature is based on the 
excellent review in Darling (1957). 

    9 This ‘duality’ resembles the alternative approach suggested by Yaari (1988) and others to 



 

 

 

 Finally, we can write (11) as 

    

which is the way Wold (1935) presented it. 

 

2.c: Covariance-based formulas 

It is well known that variance is a special case of covariance, since it can be written as Cov(X, X). 

Since the covariance has many useful properties, it is convenient to employ the covariance formula 

in writing the GMD.  

 Applying integration by parts to equation (11), with v = F(x) [1 - F(x)] and u = x,  one gets, 

after deleting zeros and rearranging terms,                    

         Γ = 2 ∫ F(t) [1 - F(t)] dt. = 4 ∫ t [F(t) - 2] f(t) dt .                 (14) 

But the expected value of F, which is uniformly distributed, is 2 so that one can rewrite equation 

(14) as: 

           Γ = 4 E {X (F(X) - E[F(X)])} = 4 Cov[X, F(X)] ,   (15) 

because one can always omit one expected value from the covariance formula. Equation (15) lets us 

                                                                                                                                                             
expected utility theory. While expected utility theory is linear in probabilities and nonlinear in 
income, Yaari's approach is linear in income and nonlinear in probabilities. In this sense, one can 
argue that the relationship between 'dual' approach and the GMD resembles the relationship 
between expected utility theory and the variance. Both indices can be used to construct a specific 
utility function for the appropriate approach (the quadratic utility function is based on the mean and 
the variance while mean minus the GMD is a specific utility function of the dual approach.  

,  dxdt  f(t)dt  f(t) = 
x

x

--
∫∫∫
∞

∞

∞

∞

Γ  (13) 



 

 

 

calculate the GMD using a simple regression program.10 Since by definition Cov[F(X), F(X)] = 

1/12 (because it is the variance of a uniformly distributed variable) we can write the GMD as 

    Γ = (1/3) Cov[X,F(X)]/ Cov [F(X), F(X)] ,       (16) 

which can be given the following interpretation: Assume that the observations are arrayed in 

ascending order, (say, by height as in the case of soldiers on parade), with equal distance between 

each two observations (soldiers). The following proposition summarizes two interpretations of the 

GMD: 

Proposition 1: 

(a) The GMD is equal to one third of the slope of the regression curve of the variable observed 

(height) as a function of each observation's position in the array. 

(b) The GMD is a weighted average of the differences in, say, heights between adjacent soldiers 

(alternatively, it is a weighted average of the slopes defined by each two adjacent heights in the 

array). The weights are symmetric around the median, with the median having the highest weight.  

Proof of (a) 

Let X(p) be the height of each soldier as a function of its position, p. Note that X(p) is the inverse of 

the cumulative distribution of X. Using Ordinary Least Squares, the slope of heights is defined as 

                                                 
    10 See Lerman and Yitzhaki (1984) for the derivation and interpretation of the formula, Jenkins 
(1987) on actual calculations using available software, and Lerman and Yitzhaki (1989) on using 
this equation to calculate the GMD in stratified samples. As far as I know, Stuart (1954) was the 
first to notice that the GMD can be written as a covariance. However, his findings were confined to 
normal distributions. Pyatt, Chau-nan, and Fei (1980) also write the Gini coefficient as a 
covariance. Hart (1975) argues that the moment-generating function was at the heart of the debate 
between Corardo Gini and Western statisticians. Hence, it is a bit ironic to find that one can write 
the GMD as some kind of a central moment.        



 

 

 

COV(X,p)/COV(p,p). Since p is uniformly distributed, cov(p,p) = 1/12, which completes the proof 

of (a). 

Proof of (b): 

Writing explicitly the numerator in (16) we get cov(x,p) = ∫ x(p) (p - 2) dp  and by using integration 

by parts with u=x(p) and v = (p - 2)2/2 we get: 

 cov(X,p) = x(p) (p-2)2/2|10 - 2 ∫ x'(p) (p - 2)2 dp . 

Substituting x(1) - x(0) = ∫x'(p)dp,  where x' denote a derivative, we get 

 cov(X,p) = 2 ∫ x'(p) p(1-p) dp .                                       (17) 

The GMD is equal to the weighted average of the slopes between the heights of each adjacent pair 

of soldiers; the weighting scheme is symmetric in ranking around the median, and the farther away 

each pair of soldiers from the middle of the distribution -- the lower the weight assign to their slope. 

Since X(p) is the inverse of the cumulative distribution it is easy to see that X'(p) = 1/f(x), that is, 

the reciprocal of the density function. Hence, a consequence of (17) is that the lower the density 

function the larger the GMD. To sum up, according to these presentations, the GMD is the average 

change in a variable for a small change in rank. 

 Equation (15), the covariance formula of the GMD, can be used to show that R-regressions 

[Hettmansperger, (1984)] are actually based on minimizing the GMD of the error term. To see that, 

note that the target function in R-regression is to minimize ∑i ei R(ei), where ei is the error term of 

observation i in the regression while R(ei) is the rank of the error term. Keeping in mind that the 

mean of the error term is constrained to equal zero, and that the rank is the empirical representation 

of the cumulative distribution will lead us to the conclusion that R-regression are actually based on 



 

 

 

minimizing the GMD of the error term. Then, some properties of these regressions can be traced to 

the properties of the GMD.    

    

 

2.d: Lorenz-Curve-based formulas 

The fourth set of presentations of the GMD is based on the generalized Lorenz Curve  (GLC), 

which is also referred to as the absolute concentration curve.11 There are several definitions of this 

curve. We follow Gastwirth's (1971, 1972) definition, which is based on the inverse of the 

cumulative distribution x(p): p is plotted on the horizontal axis while the vertical axis represents the 

cumulative value of the variate, -∞∫p x(t)dt. The familiar Lorenz curve is derived from the GLC by 

dividing the cumulative value of the variate by the mean: the vertical axis is then (1/µ), -∞∫p x(t)dt. 

The GLC has the following properties: 

1. The GLC passes through (0,0) and (1,µ). The Lorenz curve passes through (0,0) (1,1). 

2. The derivative of the curve at p is x(p); hence the curve is increasing (decreasing) depending on 

whether x is negative (positive). 

 Figure 1 presents a typical GLC, the curve OAB. Before proceeding with the relationship 

between the GLC and the GMD, I discuss some geometrical properties of the curve. The slope of 

the line connecting the two extremes of the curve is µ. I refer to this line as the Line of Equality 

                                                 
    11 The term "generalized Lorenz curve" was coined by Shorrocks (1983). Lambert (1993) gives 
an excellent description of the properties of GLC. However, it seems to me that the term "absolute" 
is more useful because it distinguishes the absolute curve from the relative one. Hart (1975) 
presents inequality indices in terms of the distribution of first moments, which is related to the 
Generalized Lorenz Curve.  



 

 

 

(LOE), because when all observations are equal the curve coincides with the line. The line OEGB 

in Figure 1 represents the LOE. Other elements in Figure 1 are: The line DFAC, which is tangent to 

the curve at A, and whose slope is q=x(p), and the vertical segment EF, which passes through 

p=1/2. 

 The absolute deviation E|X-q| of X from a quantile q can be divided into two components: a 

lower absolute deviation LAD(q) and a higher absolute deviation HAD(q). Formally: 

   LAD(q) = -∞∫
q(q-x)dF(x) = F(q) E { q-X| X  q} 

   HAD(q) = q∫∞ (x-q)dF(x) = (1-F(q)) E { X-q| X  q}, 

from which it is clear that 

    E{|X-q|} = LAD(q) +HAD(q).  (18) 

Equation (18) is actually equation (6), leading to the following: viewing q as a random variable 

identically distributed as X, means: 

   Γ = E{|X1 -X2|} = 2 Eq{LAD(q)} = 2 Eq{HAD(q)} = 4 COV(X,F(X)). (19) 

 

 



 

 

 

 

 The following geometrical results can 

be obtained from Figure 1 and the previous 

definitions. 

a. The slope of DC is q. 

b. The segment OD is equal to  LAD(q) 

and is a non-decreasing function of q. 

c. The segment BC is equal to  HAD(q) 

and is a non-increasing function of q. 

    Properties (b) and (c) imply that  OD + 

BC = EX - q. 

d. The segment EF which connects OEB 

and DAC and passes through p =1/ 2 is 

equal to  EF = 2 E{|X - q|} , which 

implies that the absolute deviation 

from the median is the smallest 

absolute deviation. 

e. Summation of the segments mentioned above over the entire range of p yields several 

presentations of the GMD. 

e.1. The area between the LOE and the GLC is equal to Cov[X, F(X)],  that is, the 

  



 

 

 

 summation of all segments GA is equal to  Cov[X, F(X)].12  

e.2. Summation of all segments OD, that is Eq{LAD(q)}, is equal to 2Cov[X, F(X)].13 

e.3. Summation of all segments BC over the entire range of p yields                    

 Eq{LAD(q)} = Eq{HAD(q)} = 2 Cov[X,F(X)] =  Γ. 

 The proof is identical to the previous one. 

e.4. The sum of all segments EF, that is summation of  2E{X B q}  over all  q,  equals  2 Cov[X, 

F(X)], which means -- one half of GMD. 

 To the best of my knowledge, this completes the alternative presentations of the GMD. 

However, this may overstate the case -- it will not come as a surprise if another alternative form 

turns up.   

 

3. The Gini Coefficient 

The Gini coefficient is a normalized version of the GMD. Its relation to the GMD resembles that 

                                                 
    12 To see this, note that the area between the LOE and GLC is equal to  
          -∞∫∞ -∞∫q (µ - x) dF(x) dF(q) = -∞∫∞ F(q) (q-µ) dF(q) = Cov[X, F(X)] , 
     which is obtained by integration by parts with v = -∞∫q(µ - x) dF(x) and du = dF(q). 

    13 To obtain this result first note that 
   Eq{LAD(q)} = -∞∫∞ -∞∫∞ (q - x) dF(x) dF(q) = 
               =  -∞∫∞ q F(q) dF(q) - -∞∫∞ -∞∫∞ x dF(x) dF(q)  . 
 Integrating by parts in the second argument with v = -∞∫∞ x dF(x) and du = dF(q) 
 yields 
 -∞∫∞ -∞∫∞ x dF(x) dF(q) = -[1 - F(q)] -∞∫q x dF(x)| ∞- ∞ + -∞∫∞ q[1-F(q)] dF(q)  
                                       = -∞∫∞ q [1-F(q)] dF(q) . 
 Hence: 
 Eq{LAD(q)} = -∞∫∞ q F(q) dF(q) --∞∫∞ q [1-F(q)] dF(q) = 
                     = 2 -∞∫∞ q [F(q) - 2] dF(q) = 2Cov[X,F(X)] = 1/2 Γ . 



 

 

 

between the variance and the coefficient of variation. The best known version of the Gini 

coefficient is as the area between the Lorenz curve and the 45o line divided by the maximum value 

of the index. For non-negative variables, the range of the coefficient is [0,1], with zero representing 

perfect equality while 1 is reached when one observation is positive and all other observations are 

zero. Being a unit-free index, the Gini coefficient is unaffected by multiplication of the variable by 

a constant. The Gini coefficient can be defined in two alternative ways: 

a: The Gini coefficient is the GMD divided by twice the mean. 

b: The Gini coefficient is the GMD divided by the maximum possible value that the index can 

have, provided that the mean and the range of the distribution do not change. 

 The only difference between these two versions of the definition occurs in two extreme 

cases: The first version applies only when the expected value of the variable is positive;14 the 

second imposes no restrictions on the distribution of the variable. Furthermore, the second version 

has a built-in correction for discrete distributions with finite values. 

 

4. The relationship with the variance 

The aim of this section is to demonstrate that knowledge of the similarity between the GMD and 

the variance enables us to find other connections. For example, one of the advantages of the Gini 

coefficient is its graphical representation based on the Lorenz curve. I will show that one can 

imitate the derivation of the Gini in order to show that the coefficient of variation can also be 

shown as the area defined by a (transformation) of the Lorenz curve and the 450 line.  

                                                 
    14 If the variable may take negative values, the Gini coefficient can be greater than one.  



 

 

 

 As explained earlier, the Gini coefficient is twice the area defined between p and θ(p), 

where θ(p) is the Lorenz curve. It will be shown that the coefficient of variation can be defined by a 

curve, which is equivalent to the Lorenz curve.  

Proposition 2: The coefficient of variation is the area defined between p(X) and θ[p(X)], when p 

and θ() are made functions of X. 

Proposition 2 means that if one takes the Lorenz curve and applies a monotonic transformation to 

the horizontal axis, (i. e. portraying the curve as a function of x rather than of p), then the 

coefficient of variation has a geometrical presentation that  resembles the Gini coefficient.  

Proof:  

To simplify the proof, assume that the range of the random variable is bounded by [a,b].  First, 

formally define the curve. Let {F(X) - θ(X)} / µ, where 

∫
∞−

==
X

tf(t)dt
µ
1θ(F(X))θ(X) is the Lorenz curve defined as a function of X. Then 

To prove equation (20), use integration by parts  

and by dividing both sides by µ the proof is complete.  

 The coefficient of variation can thus be presented in a manner that resembles the Gini 

.dx  (x)] - [F(x) )(1/= )/(
b

a

2 θµµσ ∫  (20) 

µσµµ

µθθ

∫

∫∫

/ =xf(x)dx  ] -[x )(1/

 =dx  ]xf(x)/ - x[f(x) - x (x)] - [F(x)=]dx (x) - [F(x)

2
b

a

b

a

b

a

b

a

|
 (21) 



 

 

 

coefficient. This helps point out the advantage of using the Gini coefficient. The summation of the 

area for the Gini extends over a range of [0,1], whereas summation of the area for the coefficient of 

variation extends over the range of the random variable. Hence, for variables with infinite range, the 

geometrical interpretation of the coefficient of variation is problematic. The other difference 

between the two geometrical presentations is that while the Gini relies on a straight line, the 

coefficient of variation relies on the cumulative distribution.    

5. Conclusion and Further Research 

This paper tries to survey all alternative formulations of the Gini mean difference and the Gini 

coefficient.  While it is hard to make an accurate count of how many independent alternative 

definitions exist, there are clearly more than a dozen of them. This large number of alternative 

definitions explains why the Gini has been "reinvented" so often. It also explains why it is hard to 

work with the Gini.  

 The Gini index is only one member of the extended Gini family (Yitzhaki, 1983); this 

family is a parametric generalization of the GMD which enables one to stress different portions of a 

distribution. The implications of using the parametric version have not been fully investigated, 

however, it seems that most of the properties of the simple Gini carries through.   

 In order to use the Gini as an analytical tool one also needs the Gini-equivalents of the 

covariance and the correlation coefficient (Schechtman and Yitzhaki, 1987). It is easy to construct 

the Gini-covariance using the covariance formula, but it is not clear yet how many of the alternative 

formulas can be transformed to Gini covariance and correlation and what are the interpretations and 

the properties of those definitions. An important feature of the Gini covariance and correlation is 



 

 

 

that we should expect at least two covariances and two correlations between two random variables. 

This implies that one should be prepared for more than a dozen ways of expressing them. The fact 

that one has two covariances for two variables is a unique feature of the GMD. (One variable is 

represented by its cumulative distribution, and the other by the variate). It is a useful property when 

the problem at hand involves an optimization. To see that, let me concentrate on Ordinary Least 

Squares regression. Since it minimizes the sum of squares of the error term, one gets the normal 

equations - which means that the covariance of the error term with the independent variable is set to 

zero. Hence, one is not able to statistically test whether the independent variable and the error term 

are uncorrelated. Under a Gini regression, i.e. when one minimizes the GMD of the error term, 

optimization means that only one covariance is set to zero. The other covariance between the same 

variables is not set to zero, and one is capable of forming a statistical test to test the linearity of the 

regression [see Olkin and Yitzhaki (1992)]. My guess is that this property of the GMD can play an 

important role in specification tests.   

 The Gini correlation turns out to have a mixture of the properties of Pearson's and 

Spearman's correlation coefficient. This result is expected because both the rank and the variate are 

used in the GMD. This property means that the GMD (and GMD based statistics) can be viewed as 

a compromise index between the parametric and non-parametric approaches. I believe that a serious 

effort is needed to investigate this kind of a 'compromise' approach. A first step in this direction is 

to decompose the GMD of a sum of variables into basic components and to decompose the GMD 

of an overall population into Ginis of sub-populations.  Some preliminary steps, which are mainly 

based on specific applications, have already been made in the field of income distribution. 



 

 

 

 Finally, The Gini covariances and correlations play an important role in decomposition of 

the GMD (Gini coefficient)  of a sum of variables (Lerman and Yitzhaki (1985)) and the GMD of 

an overall population into the Gini of subgroups. (Yitzhaki (1994). These types of decompositions 

are at the early stages of development and beyond the scope of this paper.    
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