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TRANSITION MODELING AND ECONOMETRIC
CONVERGENCE TESTS

BY PETER C. B. PHILLIPS AND DONGGYU SUL1

A new panel data model is proposed to represent the behavior of economies in tran-
sition, allowing for a wide range of possible time paths and individual heterogeneity.
The model has both common and individual specific components, and is formulated as
a nonlinear time varying factor model. When applied to a micro panel, the decompo-
sition provides flexibility in idiosyncratic behavior over time and across section, while
retaining some commonality across the panel by means of an unknown common growth
component. This commonality means that when the heterogeneous time varying idio-
syncratic components converge over time to a constant, a form of panel convergence
holds, analogous to the concept of conditional sigma convergence. The paper provides
a framework of asymptotic representations for the factor components that enables the
development of econometric procedures of estimation and testing. In particular, a sim-
ple regression based convergence test is developed, whose asymptotic properties are
analyzed under both null and local alternatives, and a new method of clustering panels
into club convergence groups is constructed. These econometric methods are applied
to analyze convergence in cost of living indices among 19 U.S. metropolitan cities.

KEYWORDS: Club convergence, relative convergence, common factor, convergence,
log t regression test, panel data, transition.

1. INTRODUCTION

IN THE PAST DECADE, the econometric theory for dynamic panel regressions
has developed rapidly alongside a growing number of empirical studies involv-
ing macro, international, regional, and micro economic data. This rapid devel-
opment has been stimulated both by the availability of new data sets and by the
recognition that panels help empirical researchers to address many new eco-
nomic issues. For example, macro aggregated panels such as the Penn World
Table (PWT) data have been used to investigate growth convergence and eval-
uate the many diverse determinants of economic growth. Durlauf and Quah
(1999) and Durlauf, Johnson, and Temple (2005) provided excellent overviews
of this vast literature and the econometric methodology on which it depends.
Similarly, micro panel data sets such as the PSID have been extensively used to
analyze individual behavior of economic agents across section and over time;
see Ermisch (2004) and Hsaio (2003) for recent overviews of micro panel re-
search. A pervasive finding in much of this empirical panel data research is the
importance of individual heterogeneity. This finding has helped researchers to
build more realistic models that account for heterogeneity, an example being
the renewed respect in macroeconomic modeling for micro foundations that
accommodate individual heterogeneity; see Browning, Hansen, and Heckman
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(1999), Krusell and Smith (1998), Givenen (2005), and Browning and Carro
(2006).

Concerns about capturing heterogeneous agent behavior in economic theory
and modeling this behavior in practical work have stimulated interest in the
empirical modeling of heterogeneity in panels. One popular empirical model
involves a common factor structure and idiosyncratic effects. Early economet-
ric contributions of this type analyzed the asymptotic properties of common
factors in asset pricing models (e.g., Chamberlain and Rothschild (1983) and
Connor and Korajczyk (1986, 1988)). Recent studies have extended these fac-
tor models in several directions and developed theory for the determination of
the number of common factors and for inference in panel models with nonsta-
tionary common factors and idiosyncratic errors (e.g., Bai (2003, 2004), Bai and
Ng (2002, 2006), Stock and Watson (1999), Moon and Perron (2004), Phillips
and Sul (2006)). There is much ongoing work in the econometric development
of the field to better match the econometric methods to theory and to the needs
of empirical research.

To illustrate some of the issues, take the simple example of a single factor
model

Xit = δiµt + εit�(1)

where δi measures the idiosyncratic distance between some common factor µt
and the systematic part of Xit . The econometric interpretation of µt in appli-
cations may differ from the prototypical interpretation of a “common factor”
or aggregate element of influence in micro or macro theory. The factor µt
may represent the aggregated common behavior of Xit , but it could also be
any common variable of influence on individual behavior, such as an interest
rate or exchange rate. The model then seeks to capture the evolution of the
individual Xit in relation to µt by means of its two idiosyncratic elements: the
systematic element (δi) and the error (εit).

The present paper makes two contributions in this regard. First, we extend
(1) in a simple manner by allowing the systematic idiosyncratic element to
evolve over time, thereby accommodating heterogeneous agent behavior and
evolution in that behavior by means of a time varying factor loading coefficient
δit � We further allow δit to have a random component, which absorbs εit in
(1) and allows for possible convergence behavior in δit over time in relation to
the common factor µt� which may represent some relevant aggregate variable
or possible representative agent behavior. The new model has a time varying
factor representation

Xit = δitµt�(2)

where both components δit and µt are time varying and there may be some spe-
cial behavior of interest in the idiosyncratic element δit over time. As discussed
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in Section 4, we model the time varying behavior of δit in semiparametric form
as

δit = δi + σiξitL(t)−1t−α�(3)

where δi is fixed, ξit is iid(0�1) across i but weakly dependent over t, and L(t)
is a slowly varying function (like log t) for which L(t) → ∞ as t → ∞ (see
equation (24)). This formulation ensures that δit converges to δi for all α≥ 0�
which therefore becomes a null hypothesis of interest. If this hypothesis holds
and δi = δj for i �= j� the model still allows for transitional periods in which
δit �= δjt , thereby incorporating the possibility of transitional heterogeneity or
even transitional divergence across i. As shown later, further heterogeneity
may be introduced by allowing the decay rate α and slowly varying function
L(t) to be individual specific.

Such formulations accommodate some recent models of heterogeneous
agent behavior. For example, heterogeneous discount factor models typically
assume that the heterogeneity is transient and that the discount factors be-
come homogeneous in the steady state (e.g., Uzawa (1968), Lucas and Stokey
(1984), Obstfeld (1990), Schmidt-Grohe and Uribe (2003), Choi, Mark, and
Sul (2006)). In such cases, δit contains information relating to these assumed
characteristics. The parameter of interest is then δit , and particular attention
is focused on its temporal evolution and convergence behavior�

The second contribution of the paper addresses this latter issue and involves
the development of an econometric test of convergence for the time varying
idiosyncratic components. Specifically, we develop a simple regression based
test of the hypothesis H0 :δit → δ for some δ as t → ∞. The approach has
several features that make it useful in practical work. First, the test does not
rely on any particular assumptions concerning trend stationarity or stochastic
nonstationarity in Xit or µt . Second, the nonlinear form of the model (2) is
sufficiently general to include a wide range of possibilities in terms of the time
paths for δit and their heterogeneity over i� By focusing on δit , our approach
delivers information about the transition path of δit and allows for the impor-
tant case in practice where individual behavior may be transitionally divergent.

The remainder of the paper is organized into eight sections. Section 2 mo-
tivates our approach in terms of some relevant economic examples of factor
models in macroeconomic convergence, labor income evolution, and stock
prices. A major theme in our work is the analysis of long run equilibrium and
convergence by means of a transition parameter, hit . This parameter is con-
structed directly from the data Xit and is a functional of δit that provides a
convenient relative measure of the temporal evolution of δit . Under certain
regularity conditions, we show in Section 3 that hit has an asymptotic repre-
sentation in a standardized form that can be usefully interpreted as a relative
transition path for economy i in relation to other economies in the panel.

Section 4 introduces a new regression test of convergence and a procedure
for clustering panel data into clubs with similar convergence characteristics.
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We call the regression test of convergence the log t test because it is based on a
time series linear regression of a cross section variance ratio of the hit on log t.
This test is very easy to apply in practice, involving only a simple linear regres-
sion and a one-sided regression coefficient test with standard normal critical
values. The asymptotic properties of this test are obtained and a local asymp-
totic power analysis is provided. The regression on which this test is based also
provides an empirical estimate of the speed of convergence. This section pro-
vides a step by step procedure for practical implementation of this test and its
use as a clustering algorithm to find club convergence groups. An analysis of
the statistical properties of the convergence test and club convergence cluster-
ing algorithm is given in the Appendix.

Section 5 reports the results of some Monte Carlo experiments that evaluate
the performance of the convergence test in finite samples. The experiments
are set up to include some practically interesting and relevant data generating
processes.

Section 6 contains an empirical application of our methods to test for con-
vergence in the cost of living across 19 metropolitan U.S. cities using consumer
price indices. The empirical results reveal no convergence in cost of living
among U.S. cities. Apparently, the cost of living in major metropolitan cities
in California is increasing faster than in the rest of the United States, while the
cost of living in St. Louis and Houston is decreasing relative to the rest of the
United States.

Section 7 concludes the paper. The Appendices contain technical material
and proofs.

2. TIME VARYING FACTOR REPRESENTATION AND CONVERGENCE

Panel data Xit are often usefully decomposed as

Xit = git + ait�(4)

where git embodies systematic components, including permanent common
components that give rise to cross section dependence, and ait represents tran-
sitory components. For example, the panel Xit could comprise log national
income data such as the PWT, regional log income data such as the 48 con-
tiguous U.S. state log income data, regional log consumer price index data, or
personal survey income data among many others. We do not assume any par-
ticular parametric specification for git and ait at this point, and the framework
includes many linear, nonlinear, stationary, and nonstationary processes.

As it stands, the specification (4) may contain a mixture of both common
and idiosyncratic components in the elements git and ait . To separate common
from idiosyncratic components in the panel, we may transform (4) to the form
of (2), namely

Xit =
(
git + ait
µt

)
µt = δitµt for all i and t�(5)
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where µt is a single common component and δit is a time varying idiosyn-
cratic element. For example, if µt represents a common trend component in
the panel, then δit measures the relative share in µt of individual i at time t�
Thus, δit is a form of individual economic distance between the common trend
component µt and Xit . The representation (5) is a time varying factor model
of the form (2) in which µt is assumed to have some deterministic or stochasti-
cally trending behavior that dominates the transitory component ait as t → ∞.
Factoring out a common trend component µt in (5) leads naturally to specifi-
cations of the form (3) for δit . Additionally, under some regularity conditions
it becomes possible to characterize a limiting relative transition path for Xit ,
as discussed in Section 3. When both git and ait behave like I(0) variables over
time, this limiting characterization is not as relevant and factoring such as (5)
with transition properties for δit like those of (3) are less natural.2

The following examples illustrate how the simple econometric representa-
tion (5) usefully fits in with some micro- and macroeconomic models that are
commonly used in applied work.

Economic Growth: Following Parente and Prescott (1994), Howitt and
Mayer-Foulkes (2005), and Phillips and Sul (2006), and allowing for hetero-
geneous technology progress in a standard neoclassical growth model, log per
capita real income, log yit� can be written as

log yit = log y∗
i + (log yi0 − log y∗

i )e
−βit + logAit = ait + logAit�(6)

where log y∗
i is the steady state level of log per capita real effective income,

log yi0 is the initial log per real effective capita income, βit is the time varying
speed of convergence rate, and logAit is the log of technology accumulation
for economy i at time t� The relationship is summarized in (6) in the terms ait
and logAit� where ait captures transitional components and logAit includes
permanent components. Within this framework, Phillips and Sul (2006) further
decomposed logAit as

logAit = logAi0 + γit logAt�

writing current technology for country i in terms of initial technology accu-
mulation, logAi0� and a component, γit logAt� that captures the distance of
country i technology from publicly available advanced technology, logAt� at
time t� The coefficient γit that measures this distance may vary over time and
across country. If advanced technology logAt is assumed to grow at a constant
rate a� then

log yit =
(
ait + logAi0 + γit logAt

at

)
at = δitµt�

2Nonetheless, when factor representations like (5) do arise in the I(0) case, some related
modeling possibilities for the transition curves are available and these will be explored in later
work.
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corresponding to (5) and δit may be modeled according to (3). Phillips and
Sul called δit a transition parameter and µt a common growth component. Both
components are of interest in this example. In the analysis of possible growth
convergence or divergence over time and in the study of heterogeneous tran-
sition paths across economies, the time varying component δit is especially im-
portant.

Labor Income: In labor economics (e.g., Katz and Autor (1999), Moffitt and
Gottschalk (2002)), personal log real income logyit within a particular age
group is commonly decomposed into components of permanent income, git ,
and transitory income, ait� so that

log yit = git + ait �
Typically, transitory income is interpreted as an idiosyncratic component and
permanent income is regarded as having some common (possibly stochastic)
trend component. Again, this model may be rewritten as in (5) by factoring
out the common stochastic trend component. The main parameter of interest
then becomes the time profile of the personal factor loading coefficient δit �
The evolution of this parameter may then be modeled in terms of individual
attributes and relevant variables, such as education, vocational training, or job
experience.

For example, gender wage differences might be examined by modeling wages
as log yit = δitµt , with δit satisfying

δit →
{
δM for i ∈M (male),
δF for i ∈ F (female),

where µt represents a common overall wage growth component. Alternatively,
wages might be modeled as log yit = δMitµMt + δFitµFt with possibly distinct
male and female growth components µMt and µFt that both influence overall
wage growth but with coefficients satisfying

δMit → δM� δFit → 0 for i ∈M�(7)

δMit → 0� δFit → 1 for i ∈ F�
Then log yit = (δMit(µMt/µFt) + δFit)µFt = δitµt� in which case the transition
coefficient δit may diverge if trend wage growth is higher for males than fe-
males. In either case, we can model wages as a single common factor without
loss of generality within each convergent subgroup, and overall convergence
and divergence may be assessed in terms of the time evolution of δit .

Importantly also, by analyzing subgroup-convergent behavior among the
idiosyncratic transition coefficients δit , one may locate the sources of diver-
gence in a panel. Suppose, for instance, that wage inequality arises because of
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gender differences as well as certain other factors. By identifying convergence
clubs in the wage transition coefficients and analyzing the characteristics of
these clubs, the sources of wage inequality may be identified empirically.

Stock Price Factor Modeling: Models with a time varying factor structure
have been popular for some time in finance. For example, Fama and French
(1993, 1996) modeled stock returns Rit as

Rit = γ1�itθ1t + γ2�itθ2t + γ3�itθ3t + εit�(8)

where the θst are certain “common” determining factors for stock returns,
while the γs�it are time varying factor loading coefficients that capture the in-
dividual effects of the factors. It has often been found convenient in applied
research to assume that the time varying loading coefficients are constant over
short time periods. Ludvigson and Ng (2007), for instance, recently estimated
the number of common factors in a model of the form (8) based on time invari-
ant factor loadings. On the other hand, Adrian and Franzoni (2005) relaxed the
assumption and attempted to estimate time varying loadings by means of the
Kalman filter under the assumption that the factor loadings follow an AR(1)
specification.

Alternatively, as in Menzly, Santos, and Veronesi (2002), we may model
stock prices, Xit� instead of stock returns in (8) with multiple common factors,
writing

Xit =
J∑
j=1

δj�itµjt + eit =
(

J∑
j=1

δj�it
µjt

µ1t
+ eit

µ1t

)
µ1t + eit = δitµt�(9)

so that the time varying multiple common factor structure can be embedded
in the framework (5) of a time varying single common factor structure. If the
common trend elements in (9) are drifting I(1) variables of the form

µjt =mjt +
t∑
s=1

ejs for j = 1� � � � � J� with m1 �= 0�

then

µjt

µ1t
= mjt + ∑t

s=1 εjs

m1t + ∑t

s=1 ε1s
= mj

m1
+ op(1)

and we have

δit =
J∑
j=1

δj�it
mj

m1
{1 + op(1)}� µt = µ1t �
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Convergence occurs if δj�it → δj ∀j as t → ∞ and then δit → ∑J

j=1 δj(mj/m1)=
δ. It is not necessary to assume that there is a dominant common factor for this
representation to hold. Moreover, as in (7), we may have certain convergent
subgroups {Ga :a= 1� � � � �A} of stocks for which δj�it → δaj for i ∈Ga and then
δit → δa = ∑J

j=1 δ
a
j (mj/m1) for i ∈Ga. In such cases, the Xit diverge overall,

but the panel may be decomposed into A convergent subgroups. We will dis-
cuss how to classify clusters of convergent subgroups later in Section 4.

2.1. Long Run Equilibrium and Convergence

An important feature of the time varying factor representation is that it pro-
vides a new way to think about and model long run equilibrium. Broadly speak-
ing, time series macroeconomics presently involves two categories of analysis:
long run equilibrium growth on the one hand and short run dynamics on the
other. This convention has enabled extensive use of cointegration methods for
long run analysis and stationary time series methods for short run dynamic be-
havior. In the time varying factor model, the use of common stochastic trends
conveniently accommodates long run comovement in aggregate behavior with-
out insisting on the existence of cointegration and it further allows for the mod-
eling of transitional effects. In particular, idiosyncratic factor loadings provide
a mechanism for heterogeneous behavior across individuals and the possibility
of a period of transition in a path that is ultimately governed by some common
long run stochastic trend.

If two macroeconomic variables Xit and Xjt have stochastic trends and are
thought to be in long run equilibrium� then the time series are commonly hy-
pothesized to be cointegrated and this hypothesis is tested empirically. Coin-
tegration tests are typically semiparametric with respect to short run dynamics
and rely on reasonably long time spans of data. However, in micro panels such
long run behavior is often not empirically testable because of data limitations
that result in much shorter panels. In the context of the nonlinear factor model
(5), suppose that the loading coefficients δit slowly converge to δ over time, but
the data available to the econometrician are limited. The difference between
two time series in the panel is given by Xit −Xjt = (δit − δjt)µt� If µt is unit
root nonstationary and δit �= δjt , thenXit is generally not cointegrated withXjt .
But since δit and δjt converge to some common δ as t → ∞� we may think of
Xit and Xjt as being asymptotically cointegrated. However, even in this case, if
the speed of divergence of µt is faster than the speed of the convergence of δit�
the residual (δit −δjt)µt may retain nonstationary characteristics and standard
cointegration tests will then typically have low power to detect the asymptotic
comovement.

To fix ideas, suppose

δit →
{
δa for i ∈Ga,
δb for i ∈Gb,

(10)
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so that there is convergence within each of the two subgroups Ga and Gb. Un-
der model (3) for the transition coefficients, the following relation then holds
between series Xit and Xjt for i ∈Ga and j ∈Gb:

Xit − δa

δb
Xjt =

(
δit − δa

δb
δjt

)
µt =

{
σiξit − δa

δb
σjξjt

}
µt

L(t)tα
�

Hence, Xit − δa/δbXjt is I(0) when µt = Op(L(t)t
α), and then any two se-

ries from subgroups Ga and Gb are cointegrated. For example, when µt =
µL(t)tα + ∑t

s=1 ζs for some stationary sequence ζs, then each individual series
Xit follows a unit root process with nonlinear drift, and is cointegrated with
other series in Ga with cointegrating vector (1�−1) and is cointegrated with
series in Gb with cointegrating vector (1�−δa/δb). However, if L(t)−1t−αµt di-
verges (e.g., when α= 1/2 and µt =Op(t)), then the series Xit and Xjt are not
cointegrated even though we have convergence (10) in subgroups Ga and Gb

when α> 0 and

δit − δa

δb
δjt →p 0 for i ∈Ga� j ∈Gb�

δit − δjt →p 0 for i� j ∈Ga�

In effect, the speed of convergence is not fast enough to ensure cointegrated
behavior.

These examples show that for economists to analyze comovement and con-
vergence in the context of individual heterogeneity, and to analyze evolution
in the heterogeneity over time and across groups, some rather different econo-
metric methods are needed. In particular, under these conditions, conventional
cointegration tests do not serve as adequate tests for convergence. Clearly, the
two hypotheses of cointegration and convergence are related but have distinct
features. As the above examples illustrate, even though there may be no em-
pirical support for cointegration between two series Xit and Xjt , it does not
mean there is an absence of comovement or convergence betweenXit andXjt .

Accordingly, a simple but intuitive way to define “relative” long run equilib-
rium or convergence between such series is in terms of their ratio rather than
their difference or linear combinations. That is, relative long run equilibrium
exists among the Xit if

lim
k→∞

Xit+k
Xjt+k

= 1 for all i and j�(11)

In the context of (5), this condition is equivalent to convergence of the factor
loading coefficients

lim
k→∞

δit = δ�(12)
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On the other hand, if Xit and Xjt are cointegrated, then the ratio Xit/Xjt typi-
cally converges to a constant or a random variable, the former occurring when
the series have a nonzero deterministic drift.

2.2. Relative Transition

In the general case of (5), the number of observations in the panel is less than
the number of unknowns in the model. It is therefore impossible to estimate
the loading coefficients δit directly without imposing some structure on δit and
µt . Both parametric and nonparametric structures are possible. For example,
if δit evolved according to an AR(1), while µt followed a random walk with a
drift, it would be possible to estimate both δit and µt by a filtering technique
such as the Kalman filter. Alternatively, as we show below, under some regu-
larity conditions, it is possible to use a nonparametric formulation in which the
quantities of interest are a transition function (based on δit) and a growth curve
(based on µt). Some further simplification for practical purposes is possible by
using a relative version of δit as we now explain.

Since µt is a common factor in (5), it may be removed by scaling to give the
relative loading or transition coefficient

hit = Xit

1
N

∑N

i=1Xit

= δit
1
N

∑N

i=1 δit
�(13)

which measures the loading coefficient δit in relation to the panel average at
time t� We assume that the panel average N−1

∑N

i=1 δit and its limit as N → ∞
differ from zero almost surely, so that hit is well defined by the construction
(13). In typical applications, Xit , µt , and δit are all positive, so the construc-
tion of this relative coefficient presents no difficulty in practice. Like δit� hit
still traces out a transition path for economy i, but now does so in relation to
the panel average. The concept is useful in the analysis of growth convergence
and measurement of transition effects, as discussed in some companion em-
pirical work (Phillips and Sul (2006)) where hit is called the relative transition
parameter.

Some properties of hit are immediately apparent. First, the cross sectional
mean of hit is unity by definition. Second, if the factor loading coefficients δit
converge to δ� then the relative transition parameters hit converge to unity. In
this case, in the long run, the cross sectional variance of hit converges to zero,
so that we have

σ2
t = 1

N

N∑
i=1

(hit − 1)2 → 0 as t → ∞�(14)

Later in the paper, this property will be used to test the null hypothesis of
convergence and to group economies into convergence clusters.
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3. ASYMPTOTIC RELATIVE TRANSITION PATHS

In many empirical applications, the common growth component µt will have
both deterministic and stochastic elements, such as a unit root stochastic trend
with drift. In that case, µt is still dominated by a linear trend asymptotically.
In general, we want to allow for formulations of the common growth path µt
that may differ from a linear trend asymptotically, and a general specification
allows for the possibility that some individuals may diverge from the common
growth pathµt� while others may converge to it. These extensions involve some
technical complications that can be accommodated by allowing the functions to
be regularly varying at infinity (that is, they behave asymptotically like power
functions). We also allow for individual standardizations for Xit , so that ex-
pansion rates may differ, as well as imposing a common standardization for
µt . Appendix A provides some mathematical details of how these extensions
and standardizations can be accomplished so that the modeling framework is
more general. The present section briefly outlines the impact of these ideas and
shows how to obtain a nonparametric formulation of the model (5) in which
the quantities of interest are a nonparametric transition function δ(·) and a
growth curve µ(·)�

In brief, we proceed as follows. Our purpose is to standardize Xit in (5) so
that the standardized quantity approaches a limit function that embodies both
the common component and the transition path. To do so, it is convenient
to assume that there is a suitable overall normalization of Xit for which we
may write equation (5) in the standardized form given by (15) below. Suppose
the standardization factor for Xit is diT = TγiWi(T ) for some γi > 0 and some
slowly varying function3 Wi(T)� so that Xit grows for large t according to the
power law tγi up to the effect of Wi(t) and stochastic fluctuations. We may
similarly suppose that the common trend component µt grows according to
tγZ(t) for some γ > 0 and where Z is another slowly varying factor. Then we
may write

1
diT
Xit = 1

TγiWi(T )

(
ait + git
µt

)
µt = δiT

(
t

T

)
µT

(
t

T

)
+ o(1)�(15)

where we may define the sample functions µT and biT as

µT

(
t

T

)
=

(
t

T

)γ Z( t
T
T )

Z(T)
and δiT

(
t

T

)
=

(
t

T

)γi−γ Wi(
t
T
T )Z(T)

Wi(T)Z(
t
T
T )
�(16)

as shown in Appendix A.

3That is, Wi(aT)/Wi(T) → 1 as T → ∞ for all a > 0� For example, the constant function,
log(T), and 1/ log(T) are all slowly varying functions.
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Now suppose that t = [Tr]� the integer part of Tr� so that r is effectively the
fraction of the sample T corresponding to observation t� Then, for such values
of t� (15) leads to the asymptotic characterization

1
diT
Xit ∼ δiT

( [Tr]
T

)
µT

( [Tr]
T

)
∼ δiT (r)µT (r)�(17)

In (17), µT(r) is the sample growth curve and δiT (r) is the sample transition
path (given T observations) for economy i at time T� It is further convenient to
assume that these functions converge in some sense to certain limit functions
as T → ∞� For instance, the requirement that δiT and µT satisfy

µT(r)→p µ(r)� δiT (r)→p δi(r) uniformly in r ∈ [0�1]�(18)

where the limit functions µ(r) and δi(r) are continuous or, at least, piecewise
continuous, seems fairly weak. By extending the probability space in which the
functions δiT and µT are defined, (18) also includes cases where the functions
may converge to limiting stochastic processes.4 The limit functions µ(r) and
δi(r) represent the common steady state growth curve and limiting transition
curve for economy i� respectively. Further discussion, examples, and some gen-
eral conditions under which the formulations (17) and (18) apply are given in
Appendix A.

Combining (17) and (18), we have the following limiting behavior for the
standardized version of Xit :

1
diT
Xit →p Xi(r)= δi(r)µ(r)�(19)

With this limiting decomposition, we may think about µ(r) as the limiting form
of the common growth path and about δi(r) as the limiting representation of
the transition path of individual i as this individual moves toward the growth
path µ(r). Representation (19) is sufficiently general to allow for cases where
individuals approach the common growth path in a monotonic or cyclical fash-
ion, either from below or above µ(r).

To illustrate (19), when µt is a stochastic trend with positive drift, we have
the simple standardization factor diT = T and then

T−1µt=[Tr] =m [Tr]
T

+Op(T−1/2)→p mr

4For example, if µt is a unit root process, then under quite general conditions we have the
weak convergence T−1/2µ[Tr] = µT (r)⇒ B(r) to a limit Brownian motion B (e.g., Phillips and
Solo (1992)). After a suitable change in the probability space, we may write this convergence in
probability, just as in (18).
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for some constant m > 0� Similarly, the limit function δi(r) may converge to
δi as T → ∞� Combining the two factors gives the limiting path Xi(r)= δimr
for individual i� so that the long run growth paths are linear across individuals.
When there is convergence across individuals, we have limit transition curves
δi(r) each with the property that δi(1)= δ, for some constant δ > 0� but which
may differ for intermediate values (i.e., δi(r) �= δj(r) for some and possibly
all r < 1). In this case, each individual may transition in its own way toward
a common limiting growth path given by the linear function X(r) = δmr. In
this way, the framework permits a family of potential transitions to a common
steady state.

Next we consider the asymptotic behavior of the relative transition parame-
ter. Taking ratios to cross sectional averages in (15) removes the common trend
µt and leaves the standardized quantity

hiT

(
t

T

)
= d−1

iT Xit

1
n

∑n

j=1 d
−1
jT Xjt

= δiT (
t
T
)

1
n

∑n

j=1 δjT (
t
T
)
�(20)

which describes the relative transition of economy i against the benchmark
of a full cross sectional average. Clearly, hiT depends on n also, but we omit
the subscript for simplicity because this quantity often remains fixed in the
calculations. In view of (18), we have

hiT

( [Tr]
T

)
→p hi(r)= δi(r)

1
n

∑n

j=1 δj(r)
as T → ∞�(21)

and the function hi(r) then represents the limiting form of the relative transi-
tion curve for the individual i�

For practical purposes of implementation when the focus of interest is long
run behavior in the context of macroeconomic data, it will often be prefer-
able to remove business cycle components first. Extending (5) to incorporate a
business cycle effect κit� we can write

Xit = δitµt + κit�
Smoothing methods offer a convenient mechanism for separating out the cycle
κit� and we can employ filtering, smoothing, and regression methods to achieve
this. In our empirical work with macroeconomic data, we have used two meth-
ods to extract the long run component δitµt . The first is the Whittaker–
Hodrick–Prescott (WHP) smoothing filter.5 The procedure is popular because

5Whittaker (1923) first suggested this penalized method of smoothing or “graduating” data
and there has been a large subsequent literature on smoothing methods of this type (e.g., see
Kitagawa and Gersch (1996)). The approach has been used regularly in empirical work in time
series macroeconomics since the 1982 circulation of Hodrick and Prescott (1997).
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of its flexibility, the fact that it requires only the input of a smoothing para-
meter, and does not require prior specification of the nature of the common
trend µt in Xit . The method is also suitable when the time series are short. In
addition to the WHP filter, we employed a coordinate trend filtering method
(Phillips (2005)). This is a series method of trend extraction that uses regres-
sion methods on orthonormal trend components to extract an unknown trend
function. Again, the method does not rely on a specific form of µt and is ap-
plicable whether the trend is stochastic or deterministic.

The empirical results reported in our applications below were little changed
by the use of different smoothing techniques. The coordinate trend method has
the advantage that it produces smooth function estimates and standard errors
can be calculated for the fitted trend component. Kernel methods, rather than
orthonormal series regressions, provide another general approach to smooth
trend extraction and would also give standard error estimates. Kernel methods
were not used in our practical work here because some of the time series we use
are very short and comprise as few as 30 time series observations. Moreover,
kernel method asymptotics for estimating stochastic processes are still largely
unexplored and there is no general asymptotic theory to which we may appeal,
although some specific results for Markov models have been obtained in work
by Phillips and Park (1998), Guerre (2004), Karlsen and Tjøstheim (2001), and
Wang and Phillips (2006).

Using the trend estimate θ̂it = b̂itµt from the smoothing filter, the estimates

ĥit = θ̂it
1
n

∑n

i=1 θ̂it
(22)

of the transition coefficients hit = δit/(n
−1

∑n

i=1 δit) are obtained by taking ra-
tios to cross sectional averages. Assuming a common standardization6 diT = dT
for simplicity and setting t = [Tr], we then have the estimate ĥi(r) = ĥi[Tr] of
the limiting transition curve hi(r) in (21). We can decompose the trend esti-
mate θ̂it as

θ̂it = θit + eit =
[
δit + eit

µt

]
µt�(23)

where eit is the error in the filter estimate of θit � Since µt is the common
trend component, the condition eit/µt →p 0 uniformly in i seems reasonable.7

6Alternatively, if the standardizations diT were known (or estimated) and were incorporated
directly into the estimates θ̂it , then ĥit = θ̂it/(n

−1 ∑n
i=1 θ̂it ) would correspondingly build in the

individual standardization factors. Accordingly, ĥit is an estimate of hit = hiT ( tT ) as given in (20).
7Primitive conditions under which eit/µt →p 0 holds will depend on the properties of µt and

the selection of the bandwidth/smoothing parameter/regression number in the implementation
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Then

ĥi(r) =
[
δi[Tr] + ei[Tr]

µ[Tr]

]
1
n

∑n

i=1

[
δj[Tr] + ej[Tr]

µ[Tr]

] = δiT (
t
T
)

1
n

∑n

j=1 δjT (
t
T
)

+ op(1)

→p

δi(r)
1
n

∑n

j=1 δj(r)
= hi(r)�

so that the relative transition curve is consistently estimated by ĥi(r).

4. MODELING AND TESTING CONVERGENCE

A general theory for the calculation of asymptotic standard errors of fitted
curves of the type ĥi(r) that allow for deterministic and stochastic trend com-
ponents of unknown form is presently not available in the literature and is be-
yond the scope of the present paper. Instead, we will confine ourselves to the
important special case where the trend function involves a dominating stochas-
tic trend (possibly with linear or polynomial drift) and the transition coefficient
hit is modeled semiparametrically. Our focus of attention is the development
of a test for the null hypothesis of convergence and an empirical algorithm of
convergence clustering.

As condition (12) states, under convergence, the cross sectional variation of
ĥi(r) converges to zero as t → ∞. We note, however, that decreasing cross
sectional variation of ĥi(r) does not in itself imply overall convergence. For
example, such decreasing cross sectional variation can occur when there is a
local convergence within subgroups and overall divergence. Such a situation is
plotted in Figure 1.

To design a statistical test for convergence, we need to take such possibilities
of local subgroup convergence into account. As discussed earlier, the approach
we use for this purpose is semiparametric and assumes the following general
form for the loading coefficients δit :

δit = δi + σitξit� σit = σi

L(t)tα
� t ≥ 1� σi > 0 for all i�(24)

where the components in this formulation satisfy the following conditions.
Some generalization of (24) is possible, including allowance for individual spe-
cific decay rates αi and slowly varying functions Li(t) that vary over i� These

of the filter. In the case of the WHP filter, this turns on the choice of the smoothing parameter
(λ) in the filter and its asymptotic behavior as the sample size increases. For instance, if µt is
dominated by a linear drift and λ→ ∞ sufficiently quickly as T → ∞, then the WHP filter will
consistently estimate the trend effect. Phillips and Jin (2002) provided some asymptotic theory
for the WHP filter under various assumptions about λ and the trend function.
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FIGURE 1.—Stylized club convergence with two subgroups.

extensions are discussed later in Remark 6. Our theory is now developed under
(24) and the conditions below.

ASSUMPTION A1: ξit is iid(0�1) with finite fourth moment µ4ξ over i for each
t, and is weakly dependent and stationary over t with autocovariance sequence
γi(h)= E(ξitξit+h) satisfying

∑∞
h=1 h|γi(h)|<∞. Partial sums of ξit and ξ2

it − 1
over t satisfy the panel functional limit laws

1√
T

[Tr]∑
t=1

ξit ⇒ Bi(r) as T → ∞ for all i�(25)

1√
T

[Tr]∑
t=1

(ξ2
it − 1)⇒ B2i(r) as T → ∞ for all i�(26)

where Bi and B2i are independent and form independent sequences of Brownian
motions with variances ωii and ω2ii, respectively, over i.

ASSUMPTION A2: The limits

lim
N→∞

N−1
N∑
i=1

σ2
i = v2

ψ� lim
N→∞

N−1
N∑
i=1

σ4
i = v4ψ�

lim
N→∞

N−1
N∑
i=1

σ2
i ωii =ω2

ξ� lim
N→∞

N−1
N∑
i=1

σ4
i ω2ii =ω2

η�

lim
N→∞

N−2
N∑
i=2

i−1∑
j=1

σ2
i σ

2
j

∞∑
h=−∞

γi(h)γj(h)� lim
N→∞

N−1
N∑
i=1

δi = δ

all exist and are finite and δ �= 0.
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ASSUMPTION A3: Sums of ψit = σiξit and σ2
i (ξ

2
it − 1) over i satisfy the limit

laws

N−1/2
N∑
i=1

σiξit ⇒N(0� v2
ψ)�(27)

N−1/2
N∑
i=1

σ2
i (ξ

2
it − 1)⇒N(0� v4ψ(µ4ξ − 1))(28)

as N → ∞ for all t� and the joint limit laws

T−1/2N−1/2
T∑
t=1

N∑
i=1

σiξit ⇒N(0�ω2
ξ)�(29)

T−1/2N−1/2
T∑
t=1

N∑
i=1

σ2
i (ξ

2
it − 1)⇒N(0�ω2

η)�(30)

T−1/2
T∑
t=1

N−1
N∑
i=2

i−1∑
j=1

σiσjξitξjt(31)

⇒N

(
0� lim

N→∞
N−2

N∑
i=2

i−1∑
j=1

σ2
i σ

2
j

∞∑
h=−∞

γi(h)γj(h)

)

hold as N�T → ∞�

ASSUMPTION A4: The function L(t) in (24) is slowly varying (SV), increasing,
and divergent at infinity. Possible choices for L(t) are log(t + 1), log2(t + 1), or
log log(t + 1).

Panel functional limit laws such as (25) and (26) in Assumption A1 are
known to hold under a wide set of primitive conditions and were explored
by Phillips and Moon (1999). These conditions allow for the variances ωii

to be random over i� in which case the limit in (25) is the mixture process
Bi(r)=ω1/2

ii Vi(r), where Vi is standard Brownian motion. The central limit re-
sults (27) and (28) hold under Assumptions A1 and A2, and also for cases
where the components ξit are not identically distributed provided a uniform
moment condition, such as supi E(ξ

4
it) <∞� holds. The joint limit laws (29)–

(31) are high level conditions that hold under primitive assumptions of the type
given in Phillips and Moon (1999).

In Assumption A4, the slowly varying function L(t)→ ∞ as t → ∞� In ap-
plications, it will generally be convenient to set L(t) = log(t + 1) or a similar
increasing slowly varying function. The presence of L(t) in (24) ensures that
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δit →p δi as t → ∞ even when α= 0� Thus, when δi = δ for all i� the null hy-
pothesis of convergence is the weak inequality constraint α ≥ 0� which is very
convenient to test. In view of the fact that δit →p δi as t → ∞, we also obtain
a procedure for analyzing subgroup convergence. The presence of L(t) also
assists in improving power properties of the test, as we discuss below.

The conditions for convergence in the model can be characterized as

plim
k→∞

δit+k = δ if and only if δi = δ and α≥ 0�

plim
k→∞

δit+k �= δ if and only if δi �= δ or α< 0�

Note that there is no restriction on α under divergence when δi �= δ. However,
we have a particular interest in the case of divergence with δi �= δ and α≥ 0� as
this allows for the example considered in Figure 1 where there is the possibility
of local convergence to multiple equilibria. This case is likely to be important
in empirical applications where there is evidence of clustering behavior, for ex-
ample, in individual consumption or income patterns over time. In such cases,
we may be interested in testing whether elements in a panel converge within
certain subgroups.

The remainder of this section develops an econometric methodology for
testing convergence in the above context and provides a step by step proce-
dure for practical implementation. In particular, we show how to test the null
hypothesis of convergence, develop asymptotic properties of the test, includ-
ing a local power analysis, and provide an intuitive discussion of how the test
works. We also discuss a procedure for detecting panel clusters. Proofs and
related technical material are given in the Appendix.

4.1. A Regression Test of Convergence

The following procedure is a regression t test of the null hypothesis of con-
vergence

H0 :δi = δ and α≥ 0�

against the alternative HA :δi �= δ for all i or α< 0.

Step 1: Construct the cross sectional variance ratio H1/Ht , where

Ht = 1
N

N∑
i=1

(hit − 1)2� hit = Xit

N−1
∑N

i=1Xit

�(32)

Step 2: Run the following regression and compute a conventional robust t
statistic tb̂ for the coefficient b̂ using an estimate of the long run variance of
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the regression residuals:

log
(
H1

Ht

)
− 2 logL(t)= â+ b̂ log t + ût�(33)

for t = [rT ]� [rT ] + 1� � � � � T with r > 0�

In this regression we use the setting L(t)= log(t+ 1) and the fitted coefficient
of log t is b̂ = 2α̂, where α̂ is the estimate of α in H0� Note that data for this
regression start at t = [rT ]� the integer part of rT for some fraction r > 0. As
discussed below, we recommend r = 0�3.

Step 3: Apply an autocorrelation and heteroskedasticity robust one-sided t
test of the inequality null hypothesis α≥ 0 using b̂ and a HAC standard error.
At the 5% level, for example, the null hypothesis of convergence is rejected if
tb̂ <−1�65.

Under the convergence hypothesis, hit → 1 and Ht → 0 as t → ∞ for given
N� In Appendix B it is shown in (68) and (71) that Ht then has the logarithmic
form

logHt = −2 logL(t)− 2α log t + 2 log
vψN

δ
+ εt�(34)

with

εt = 1√
N

ηNt

v2
ψN

− 2
δ

1
tαL(t)

ψt + 1
δ2

1
t2αL(t)2

ψ2
t +Op

(
1
N

)
�(35)

where v2
ψN =N−1(1−N−1)

∑N

i=1σ
2
i → v2

ψ asN → ∞,ηNt =N−1/2
∑N

i=1σ
2
i (ξ

2
it−

1), and ψt =N−1
∑N

i=1σitξit . From (34) we deduce the simple regression equa-
tion

log
H1

Ht

− 2 logL(t)= a+ b log t + ut�(36)

where b = 2α, ut = −εt , and the intercept a = logH1 − 2 log(vψN/δ) =
−2 logL(1)+ u1 does not depend on α.

Under convergence, log(H1/Ht) diverges to ∞, either as 2 logL(t) when
α = 0 or as 2α log t when α > 0� Thus, when the null hypothesis H0 ap-
plies, the dependent variable diverges whether α= 0 or α > 0� Divergence of
log(H1/Ht) corresponds to Ht → 0 as t → ∞. Thus, H0 is conveniently tested
in terms of the weak inequality null α ≥ 0. Since α is a scalar, this null can be
tested using a simple one-sided t test.

Under the divergence hypothesis HA, for instance, when δi �= δ for all i� Ht

is shown in Appendix B to converge to a positive quantity as t → ∞. Hence,
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under HA� the dependent variable log(H1/Ht) − 2 logL(t) diverges to −∞
in contrast to the null H0, under which log(H1/Ht) diverges to ∞. The term
−2 logL(t) in (36) therefore serves as a penalty that helps the test on the coef-
ficient of the log t regressor to discriminate the behavior of the dependent vari-
able under the alternative from that under the null. In particular, when α= 0
and δi �= δ for some i� the inclusion of logL(t) produces a negative bias in the
regression estimate of b since log t and −2 logL(t) are negatively correlated�
The t statistic for b̂ then diverges to negative infinity and the test is consistent
even in this (boundary) case where α= 0�

Discarding some small fraction r of the time series data helps to focus at-
tention in the test on what happens as the sample size gets larger. The limit
distribution and power properties of the test depend on the value of r� Our
simulation experience indicates that r = 0�3 is a satisfactory choice in terms of
both size and power. Appendix B provides details of the construction of the
regression equation under the null and alternative, and derives the asymptotic
properties of the log t test.

4.2. Asymptotic Properties of the log t Convergence Test

The following result gives the limit theory for the least squares estimate b̂ of
the slope coefficient b in the log t regression equation (36) and the associated
limit theory of the regression t test under the null H0.

THEOREM 1—Limit Theory under H0: Let the panel Xit defined in (2)
have common factor µt and loading coefficients δit that follow the generating
process (24) and satisfy Assumptions A1–A4. Suppose that the convergence hy-
pothesis H0 holds and the regression equation (36) is estimated with time se-
ries data over t = [Tr]� � � � �T� for some r > 0� Suppose further that if α > 0,
T 1/2/(T 2αL(T)2N1/2)→ 0 and if α= 0, T 1/2/N → 0 as T�N → ∞�

(a) The limit distribution of b̂ is
√
NT(b̂− b)⇒N(0�Ω2)�(37)

where Ω2 = ω2
η/v

4
ψ{(1 − r) − ( r

1−r ) log2 r}−1, ω2
η = limN→∞ 1

N

∑N

i=1σ
4
i ω2ii, and

v2
ψ = limN→∞ 1

N

∑N

i=1σ
2
i .

(b) The limit distribution of the regression t statistic is

tb̂ = b̂− b
sb̂

⇒N(0�1)�

where

s2
b̂
= l̂varr(ût)

[
T∑

t=[Tr]

(
log t − 1

T − [Tr] + 1

T∑
t=[Tr]

log t

)2]−1
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and l̂varr(ût) is a conventional HAC estimate formed from the regression residuals
ût = log(H1/Ht)−2 logL(t)− â− b̂ log t for t = [Tr]� � � � �T . The estimate TNs2

b̂

is consistent for Ω2 as T�N → ∞.

REMARK 1: As shown in Appendix B, to avoid asymptotic collinearity in the
regressors (the intercept and log t), the regression (36) may be rewritten as

log
H1

Ht

− 2 logL(t)= a∗ + b log
t

T
+ ut�(38)

where a∗ = a+ b logT . The estimate b̂ then has the form

b̂− b=
(

T∑
t=[Tr]

τtut

)(
T∑

t=[Tr]
τ2
t

)−1

�

involving the demeaned regressor τt = (log t
T

− log t
T
) = log t − 1

T−[Tr]+1 ×∑T

t=[Tr] log t, where log t
T

= 1
T−[Tr]+1

∑T

t=[Tr] log t
T

.

REMARK 2: The convergence rate for b̂ under the null of convergence is
O(

√
NT) and is the same for all α ≥ 0� Although the regression is based

on only O(T) observations (specifically, T − [Tr] observations), the conver-
gence rate is faster than

√
T because the dependent variable logHt involves

a cross section average (32) over N observations and this averaging affects
the order of the regression error ut = −εt , as is apparent in (35). In par-
ticular, the leading term of εt is Op(N−1/2) when the relative rate condition
T 1/2/(T 2αL(T)2N1/2) → 0 holds for α > 0 or when T 1/2

N
→ 0 holds if α = 0.

These rate conditions require that N does not pass to infinity too slowly rela-
tive to T�Otherwise the limit distribution (37) involves a bias term, as discussed
in Appendix B.

REMARK 3: The quantity Ω2
u = ω2

η/v
4
ψ in the asymptotic variance formula

is the limit of a cross section weighted average of the long run variances ω2ii

of ηit = ξ2
it − 1� Appendix B shows how this average long run variance can

be estimated by a standard HAC estimate, such as the truncated kernel es-
timate l̂varr(ût) = ∑M

l=−M
1

T−[Tr]
∑

[Tr]≤t�t+l≤T ût ût+l given in (93) and formed in
the usual way from the residuals ût with bandwidth (truncation) parameterM�
Of course, other kernels may be used and the same asymptotics apply for stan-
dard bandwidth expansion rates for M such as M√

T
+ 1

M
→ 0� as discussed in

Appendix B.
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FIGURE 2.—The precision curve (1 − r)− ( r
1−r ) log2 r.

REMARK 4: The precision of the estimate b̂ is measured by the reciprocal of
Ω2 and depends on the factor

(1 − r)−
(

r

1 − r
)

log2 r →
{

1� r → 0,
0� r → 1.

So the asymptotic variance of b̂ diverges as r → 1� corresponding to the fact
that the fraction of the sample used in the regression goes to zero in this event.
The precision curve is graphed in Figure 2.

REMARK 5: We call the one-sided regression t test based on tb̂ the log t test.
To test the hypothesis b = 2α ≥ 0, we fit the regression model (36), or equiv-
alently (38), over t = [Tr]� � � � � T and compute the t statistic tb = b̂/sb̂� As the
following result shows, this test is consistent against alternatives where the idio-
syncratic components δit diverge (i.e., when b= 2α< 0) as well as alternatives
where the δit converge, but to values δi that differ across i� Both cases seem
important in practical applications and it is an advantage of the log t test that
it is consistent against both.

REMARK 6—Models with Heterogeneous Decay Rates αi�Li(t): As indi-
cated earlier, the framework based on (24) may be extended by allowing for
individual specific decay rates in the loading coefficients. In such cases, both
the rate parameter α and the slowly varying function L(t) may vary over i� Re-
laxation of (24) in this way may be useful in some applications where there is
greater heterogeneity across the population in terms of temporal responses to
the common trend effect. For instance, some individuals may converge faster
than others. Alternatively, in cases where there are subgroups in the popula-
tion, there may be heterogeneity in the temporal responses among the different
groups. To accommodate these extensions, we may replace (24) with the model

δit = δi + σitξit� σit = σi

Li(t)tαi
� t ≥ 1� σi > 0 for all i�(39)
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where under the null hypothesisH0 the decay rates αi ≥ 0 ∀i and where each of
the slowly varying functions has the form Li(t)= logβi t for βi > 0 and t large,
thereby satisfying Assumption A4. This specification should be sufficiently gen-
eral to include most cases of practical interest, the most important extension
being to allow for individual rate effects αi. To extend our asymptotic develop-
ment to apply under (39), it is convenient to assume that the rates αi�βi and
the standard error σi are drawn from independent distributions with smooth
densities fα(α)� fβ(β)� fσ(σ) supported over α ∈ [a�A] for some a≥ 0�A> 0�
and β ∈ [b�B] for some b�B > 0 and σ ∈ [0�∞). In this more general frame-
work, we still have hit →p 1 and Ht →p 0 as t → ∞ under the convergence
hypothesis H0. Specifically, we have

hit − 1 = ψit −ψt
δ+ψt � ψit = σiξit

Li(t)tαi
�

where

ψt =N−1
N∑
i=1

σiξit

Li(t)tαi

has mean zero and, assuming
∫ ∞

0 σ2fσ(σ)dσ <∞,

N−1
N∑
i=1

σ2
i

(log2βi t)t2αi
→

∫ ∞

0
σ2fσ(σ)dσ

∫ B

b

fβ(β)dβ

log2β t

∫ A

a

fα(α)dα

t2α

as N → ∞ by the strong law of large numbers. Using integration by parts, the
following asymptotic expansions are obtained for large t:∫ B

b

fβ(β)dβ

log2β t
= fβ(b)

(log2b t)(log log t)
{1 + op(1)}

and ∫ A

a

fα(α)dα

t2α
= fα(a)

t2a log t
{1 + op(1)}�

Then ψt =Op(N−1/2t−2a(log2b t)−1(log log t)−1) and

Ht =N−1
N∑
i=1

(ψit −ψt)2

(δ+ψt)2
= N−1

∑N

i=1ψ
2
it

δ2

{
1 + op

(
1

N1/2t2α log1+2b t

)}

=
∫ ∞

0 σ2fσ(σ)dσ fα(a)fβ(β)

t2a(log2b t)(log log t)δ2
{1 + op(1)}�
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since

N−1
N∑
i=1

ψ2
it =N−1

N∑
i=1

σ2
i ξ

2
it

Li(t)2t2αi

=N−1
N∑
i=1

σ2
i

Li(t)2t2αi
+N−1

N∑
i=1

σ2
i (ξ

2
it − 1)

Li(t)2t2αi

=
∫ ∞

0 σ2fσ(σ)dσ fα(a)fβ(β)

t2a(log2b t)(log log t)
{1 + op(1)}�

It follows that

logHt = log
{∫ ∞

0 σ2fσ(σ)dσ fα(a)fβ(β)

t2a(log2b t)(log log t)δ2

}
{1 + op(1)}(40)

= log
{
δ−2

∫ ∞

0
σ2fσ(σ)dσ fα(a)fβ(β)

}
− 2a log t

− log{(log2b t)(log log t)} + op(1)
= 2 log

ν

δ
− 2a log t − 2 logL(t)+ op(1)

with ν = ∫ ∞
0 σ2fσ(σ)dσ fα(a)fβ(β) and L(t)2 = (log2b t)(log log t). Thus,

apart from the particular form of the slowly varying function L(t), logHt has
the same specification for large t as (34) for the homogeneous decay rate case.
Note that in (40) the term involving log t has coefficient −2a, where a is the
lower bound of the support of the decay rates αi. Corresponding to (40), we ob-
tain a regression equation with the same leading systematic form as the model
(36) given above. The regression equation is, in fact, identical to (36) when the
slowly varying component in (39) is homogeneous across i and only the rate
effects αi are heterogeneous. The approach to testing convergence using the
log t regression (40) can therefore be applied when the model is of the more
general form (39), allowing for heterogeneity in the decay rates across the pop-
ulation. In such cases the coefficient of the log t regressor is the lower bound
of the decay rates across the population under the null. Under the alternative
hypothesis of nonconvergence, when we allow for heterogeneity in the decay
rates αi, we may have αi < 0 for some i and αi > 0 for other i. In such cases,
there may be the possibility of subgroup convergence among those individuals
with positive αi and this may be tested using the clustering algorithm described
below.

THEOREM 2—Test Consistency Under HA: Suppose the alternative hypothe-
sis HA holds and the other conditions of Theorem 1 apply.
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(a) If α≥ 0 and δi ∼ iid(δ�σ2
δ) with σ2

δ > 0, then

b̂→p 0� tb̂ = b̂

sb̂
→ −∞�

as T�N → ∞.
(b) If γ = −α > 0, δi = δ for all i, and Tγ−1/2/(

√
NL(T))+ 1

T
+ 1

N
→ 0, then

√
NTL(T)

T γ
(b̂− b)⇒ 2

δ
N(0�Q2

ξ)�

where

Q2
ξ =ω2

ξ

[∫ 1

r

{
log s− 1

1 − r
∫ 1

r

logpdp
}2

s2γ ds

]

×
[
(1 − r)−

(
r

1 − r
)

log2 r

]−1

and tb̂ = b̂/sb̂ → −∞.
(c) If γ = −α> 0, δi = δ for all i, and

√
NL(T)T−γ + T−1 +N−1 → 0, then

b̂→p 0� tb̂ = b̂

sb̂
→ −∞�

In all cases the test is consistent.

REMARK 7: The alternative hypothesis under (a) involves δi ∼ iid(δ�σ2
δ) so

that δi �= δ for all i. As is clear from the proof of Theorem 2, it is sufficient
for the result to hold that δi �= δ for i ∈G� some subgroup of the panel, and
for NG = #{i ∈ G}� the number of elements in G� to be such that NG/N →
λ > 0 as N → ∞� Test consistency therefore relies on the existence of enough
economies with different δi� The condition will be satisfied, for instance, in
cases like that shown in Figure 1 where there are two convergence clubs with
membership proportions λ and 1 − λ. Obviously, the convergence null does
not hold in this case but the cross sectional variation of the relative transition
parameters measured by Ht may well decrease over time. Calculation reveals
that

lim
N→∞
t→∞

Ht = λ(1 − λ)(δA − δB)2

(λδA + (1 − λ)δB)2
:=HAB�

where δA = limi∈A�t→∞ δit and δB = limi∈B�t→∞ δit for two subgroupsGA andGB

with membership shares λ = limN→∞(NGA/N) and 1 − λ = limN→∞(NGB/N).
Clearly HAB will be close to zero when the group means δA and δB are close.
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REMARK 8: In part (a) of Theorem 2, b̂→p 0. The heuristic explanation is
that, when α≥ 0 and δi ∼ iid(δ�σ2

δ),Ht tends to a positive constant, so that the
dependent variable in (36) behaves like −2 logL(t) for large t� Since logL(t)
is the log of a slowly varying function and grows more slowly than log t, its
regression coefficient on log t is expected to be zero. More specifically, the
regression of −2 logL(t) on log( t

T
) produces a slope coefficient that is negative

and tends to zero like − 2
logT � as is shown in (102) in the Appendix. Since sb̂ →p

0 also and at a faster rate, the t ratio tb̂ then diverges to negative infinity and
the test is consistent.

REMARK 9: In part (b), b̂ is consistent to b= 2α < 0, but at a reduced rate
of convergence. The test is again consistent because tb̂ = (b̂−b)/sb̂+ (b/sb̂)→
−∞ by virtue of the sign of b.

REMARK 10: In part (c), we again have b̂→p 0. In this case, the δit have
divergent behavior and Ht =Op(N). Hence, in the time series regression (36),
the dependent variable behaves like −2 logL(t) for large t� and the slope co-
efficient is negative and tends to zero like −2/ logT , just as in part (a).

It is also interesting to analyze the local asymptotic properties of the log t
test. The following result analyzes the asymptotic consistency of the test for
local departures from the null of the form

HLA :δi ∼ iid(δ� c2T−2ω)�(41)

Such departures measure deviations from the null H0 in terms of a distance
|δi − δ| that is local to zero and of magnitude Op(T−ω) for some parameter
ω > 0� This local consistency result turns out to be useful in the clustering
algorithm developed below.

THEOREM 3—Local Asymptotic Consistency: Suppose the local alternative
hypothesis HLA holds and the other conditions of Theorem 1 apply.

(a) Under (41) with ω ≤ α, b̂→p 0 and tb̂ = b̂
s
b̂

→ −∞ as T�N → ∞. The

test is consistent and the rate of divergence of tb̂ is O((logT)T 1/2/M1/2) for all
choices of bandwidth M ≤ T .

(b) Under the local alternative (41) with ω > α and when (T 2(ω−α))/(
√
N ×

L(T)2)→ 0 as T�N → ∞,

b̂− b= − c2

v2
ψN

h(r)
L(T)2

T 2(ω−α) {1 + op(1)} →p 0�

tb̂ →
{∞� for b= 2α> 0,

−∞� for b= 2α= 0,
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where

h(r)=
[∫ 1

r

{
log s− 1

1 − r
∫ 1

r

logpdp
}
s2α ds

]

×
[
(1 − r)−

(
r

1 − r
)

log2 r

]−1

�

REMARK 11: In the proof of part (a), it is shown that

b̂= − 2
logT

+Op
(

1

log2 T

)
� tb̂ = − 2

logT
×Op

(
(log2 T)T 1/2

M1/2

)
�

and so both b̂ and the t ratio tb̂ have the same asymptotic behavior as in the
case of fixed alternatives of the form δi ∼ iid(δ�σ2

δ) considered in part (a) of
Theorem 2. The reason for this equivalence is that under (41) the idiosyncratic
effects have the form

δit = δi + σitξit = δ+ ξi

Tω
+ σiξit

L(t)tα
�

where the ξi are iid(0� c2). When ω ≤ α, the final term is of smaller order
than δi = δ + ξi/T

ω and so the log t regression has the same discriminatory
power to detect the departure of δi from δ as it does in the case where the
δi are iid(δ�σ2

δ). We say that the test is locally consistent in the sense that it is
consistent against local departures from the null of the form (41).

REMARK 12: When ω > α > 0� the test has negligible power to detect al-
ternatives of the form (41). Since ω> α� this is explained by the fact that the
alternatives are closer to the null than the convergence rate, so they elude
detection. However, when ω > α = 0� the convergence rate of the idiosyn-
cratic effects δit is 1/L(t) and is slower than any power rate. In this case, re-
markably the test is consistent, although the divergence rate of the statistic is
only Op(T 1/2/M1/2), which diverges when M

T
→ 0 (i.e., for standard bandwidth

choices in HAC estimation). The consistency is explained by the fact that, even
though the alternatives δi �= δ are still very close to the null in (41), the rate of
convergence of δit is so slow that the test is able to detect the local departures
from the null.

REMARK 13: Theorem 3 may be interpreted to include the case where there
are additional individual effects in the formulation of the nonlinear factor
model. For instance, suppose the panel Xit involves an additive effect so that

X∗
it =Xit + ai =

(
ai

µt
+ δit

)
µt = δ∗

itµt
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with

δ∗
it = δi +

ai

µt
+ σiξit

L(t)tα
:= δ∗

i + σiξit

L(t)tα
�

Suppose the additive effect is common and ai = a for all i. Then if δi = δ for
all i and if the common trend µt =Op(tθ) with θ > α, we have

δ∗
it = δ+ σiξit

L(t)tα
+ op

(
1

L(t)tα

)
�

in which case Theorem 1 holds when α> 0� If δi = δ for all i and ai ∼ iid(0� c2)�
then the model is equivalent to that considered in Theorem 3, in which case the
presence of the individual effects may be detectable, depending on the relative
magnitudes of the decay parameters θ and α.

REMARK 14: Appendix B provides some discussion of the choice of the
slowly varying function L(t) in terms of the induced asymptotic power proper-
ties. It is shown there that among choices such as L(t)= log t, log2 t = log log t,
and log3 t = log log log t, and where t is large, the choice L(t) = log t is pre-
ferred in terms of asymptotic power. This choice was also found to work well
in simulations and is recommended in practice.

4.3. Club Convergence and Clustering

Rejection of the null of convergence does not imply there is no evidence
of convergence in subgroups of the panel. Many possibilities exist as we move
away from a strict null of full panel convergence. Examples include the possible
existence of convergence clusters around separate points of equilibria or steady
state growth paths, as well as cases where there may be both convergence clus-
ters and divergent members in the full panel. If there are local equilibria or
club convergence clusters, then it is of substantial interest to be able to iden-
tify these clusters, determine the number of clusters, and resolve individuals
into respective groups. In the empirical growth literature, the great diversity in
economic performance across countries has made searching for convergence
clubs a central issue. For example, Canova (2004), Canova and Marcet (1995),
Durlauf and Johnson (1995), and Quah (1996, 1997) all attempt to classify and
identify convergence clubs.

Perhaps the simplest case for empirical analysis occurs when subgroups can
be suitably categorized by identifying social or economic characteristics. For
example, gender, education, age, region, or ethnicity could be identifying at-
tribute variables. Under clustering by such covariates, convergence patterns
within groups may be conducted along the lines outlined above using log t re-
gressions. For instance, if the convergence null for individual consumption be-
havior in a particular region (or age group) were rejected and it was suspected
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that gender or ethnicity differences were a factor in the rejection log t conver-
gence tests could be rerun for different panels subgrouped according to gen-
der and ethnicity to determine whether convergence was empirically supported
within these subgroups.

Alternatively, if convergence subgroups can be determined by an empirical
clustering algorithm, then it becomes possible to subsequently explore links be-
tween the empirical clusters and various social and economic characteristics.
In this case, the club convergence grouping becomes a matter for direct em-
pirical determination. A simple algorithm based on repeated log t regressions
is developed here to provide such an empirical approach to sorting individuals
into subgroups.

To initiate the procedure, we start with the assumption that there is a “core
subgroup” GK with convergence behavior, that this subgroup contains at least
K members, and that the subgroup is known. Below we discuss a method for
detecting the initial core subgroup. Next we consider adding an additional in-
dividual (K + 1, say) to GK . To assess whether the new individual belongs to
GK , we perform a log t test. If K + 1 belongs to GK , the point estimate of b in
the log t test will not be significantly negative and the null hypothesis will be
supported in view of Theorem 1. Otherwise, the point estimate of b will de-
pend on the size of K and the extent of the deviation from the null. To see this,
set δi = δA for i = 1� � � � �K and δi = δB for i = K + 1� The variation of δi in
the augmented subgroup is given by

σ2 = 1
K + 1

K+1∑
i=1

(δi − δ̄)2 = K

(K + 1)2
(δA − δB)2�(42)

where

δ̄= 1
K + 1

K+1∑
i=1

δi = KδA

K + 1
+ δB

K + 1
�

As K→ ∞, σ2 =O(K−1)→ 0 and δ̄→ δA.
An asymptotic analysis of club convergence patterns in such cases can be

based on local alternatives of the form

δi ∼ iidN(δ� c2K−1)�(43)

Appendix C provides such an analysis. It is shown there that when c2 > 0 and
K/T 2α → 0 as T → ∞� the procedure is consistent in detecting departures
of the form (43) for all bandwidth choices M ≤ T� Given that σ2 = O(K−1)
in (42), this analysis also covers the case where δi = δA for i = 1� � � � �K and
δK+1 = δB �= δA�On the other hand, when δi = δA for i= 1� � � � �K+ 1, the null
hypothesis holds forN =K+1 and tb̂ = (b̂−b)/sb̂ ⇒N(0�1), as in Theorem 1.
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When T 2α/K → 0, the alternatives (43) are very close to the null, relative
to the convergence rate except when α= 0. This case is analogous to case (b)
of Theorem 3 and as that theorem shows, the test is inconsistent and unable
to detect the departure from the null when α > 0. However, when α = 0, the
convergence rate is slowly varying under the null, and Theorem 3 shows that
the test is in fact consistent against local alternatives of the form (43). In effect,
although the alternatives are very close (because K is large), the convergence
rate is slow (slower than any power rate) and this suffices to ensure that the
test is consistent as T → ∞.

We now suggest the following method of finding a core subgroup GK . When
there is evidence of multiple club convergence as T → ∞, this is usually most
apparent in the final time series observations. We therefore propose that the
panel be clustered initially according to the value of the final time series ob-
servation (or some average of the final observations). After ordering in this
way, size k subgroups, Gk = {1� � � � �k} for {k= 2� � � � �N}, may be constructed
based on panel members with the k highest final time period observations.
Within each of these subgroups, we may conduct log t regression tests for con-
vergence, denoting by tk the test statistic from this regression using data from
Gk. Next, we choose k∗ to maximize tk over all values for which tk > c for
k= 2� � � � �N and where c is some critical value� A precise algorithm based on
these ideas is contained in the following step by step procedure to determine
the clustering pattern and to provide a stopping rule for the calculations.

Step 1: Last Observation Ordering. Order individuals in the panel according
to the last observation in the panel. In cases where there is substantial time
series volatility in Xit� the ordering may be done according to the time series
average, (T − [Ta])−1

∑T

t=[Ta]+1Xit , over the last fraction (f = 1 − a) of the
sample (for example, f = 1/3 or 1/2).

Step 2: Core Group Formation. Selecting the first k highest individuals in
the panel to form the subgroup Gk for some N > k ≥ 2, run the log t regres-
sion and calculate the convergence test statistic tk = t(Gk) for this subgroup�
Choose the core group size k∗ by maximizing tk over k according to the crite-
rion:

k∗ = arg max
k

{tk} subject to min{tk}>−1�65�(44)

The condition min{tk} > −1�65 plays a key role in ensuring that the null hy-
pothesis of convergence is supported for each k� However, for each k there
is the probability of a type II error. Choosing the core group size so that
k∗ = arg maxk{tk} then reduces the overall type II error probability and helps
ensure that the core groupGk∗ is a convergence subgroup with a very low false
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inclusion rate.8 Our goal is to find a core convergence group in this test and
then proceed in Step 3 to evaluate additional individuals for membership of
this group. If there is a single convergence club with all individuals included,
then the size of the convergence club isN ; when there are two or more conver-
gence clubs, each club necessarily has membership less thanN . If the condition
min{tk}>−1�65 does not hold for k= 2, then the highest individual in Gk can
be dropped from each subgroup and new subgroups G2j = {2� � � � � j} can be
formed for 2 ≤ j ≤N . The step can be repeated with test statistics tj = t(G2j).
If the condition min{tj}>−1�65 is not satisfied for the first j = 2, the step may
be repeated again, dropping the highest individuals in Gj and proceeding as
before. If the condition does not hold for all such sequential pairs, then we
conclude that there are no convergence subgroups in the panel. Otherwise, we
have found a core convergence subgroup, which we denote Gk∗ .

Step 3: Sieve Individuals for Club Membership. Let Gc
k∗ be the complemen-

tary set to the core group Gk∗ . Adding one individual in Gc
k∗ at a time to the

k∗ core members of Gk∗ , run the log t test. Denote the t statistic from this re-
gression as t̂. Include the individual in the convergence club if t̂ > c, where c is
some chosen critical value. We will discuss the choice of the critical value below
and in the Monte Carlo section. Repeat this procedure for the remaining in-
dividuals and form the first subconvergence group. Run the log t test with this
first subconvergence group and make sure tb̂ > −1�65 for the whole group. If
not, raise the critical value, c� to increase the discriminatory power of the log t
test and repeat this step until tb̂ >−1�65 with the first subconvergence group.

Step 4: Stopping Rule. Form a subgroup of the individuals for which t̂ < c in
Step 3. Run the log t test for this subgroup to see if tb̂ >−1�65 and this cluster
converges. If so, we conclude that there are two convergent subgroups in the
panel. If not, repeat Steps 1–3 on this subgroup to determine whether there is a
smaller subgroup of convergent members of the panel. If there is no k in Step 2
for which tk >−1�65, we conclude that the remaining individuals diverge.

The application in Section 6 provides practical details and an illustration
of the implementation of this algorithm. Table IV, in particular, lays out the
sequence of steps involved in a specific application where there are multiple
clusters.

8We might consider controlling the critical value based on the distribution of the maxk{tk}
statistic over the cross section. However, since this distribution changes according to the true
size and composition of the actual convergence subgroup (which is unknown), this approach is
not feasible. Instead, the maxk tk rule is designed to be conservative in its selection of the core
subgroup so that the false inclusion rate is small. Note that the rule (44) is used to determine
only the membership of this core group. Subsequently, we apply individual log t regression tests
to assess membership of additional individuals. The performance of this procedure is found to be
very satisfactory in simulations that are reported in Section 5.
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5. MONTE CARLO EXPERIMENTS

The simulation design is based on the data generating process (DGP)

Xit = δitµt� δit = δi + δ0
it �(45)

δ0
it = ρiδ0

it−1 + εit� Var(εit)= σ2
i L(t + 1)−2t−2α

for t = 1� � � � �T and L(t + 1) = log(t + 1), so the slowly varying function
L(t + 1)−1 is well defined for all t ≥ 1. We set εit ∼ iidN(0�σ2

i L(t + 1)−2t−2α)
and ρi ∼U[0�ρ] for ρ= 0�5�0�9. To ensure that δit ≥ 0 for all i and t, we con-
trol the range of σi by setting σi ∼U[0�02�0�28] so that the 97.5% lower confi-
dence limit for δit at t = 1 is greater than zero and then discard any trajectories
that involve negative realizations. The simulation treats δi and ρi as random
variables drawn from the cross section population, so that for each iteration
new values are generated. Since the common component µt cancels out in the
application of our procedure, there is no need to specify a parametric form
for µt .

The log t regression procedure relies on input choices of the initiating sam-
ple fraction r and the slowly varying function L(t). In simulations, we explored
a variety of possible choices; the full Monte Carlo results that consider these
are available online.9 Here we briefly report the results of varying these inputs
and make some recommendations for applied work.

First we review the effects of varying the initiating sample fraction r. Vari-
ous N and T combinations are considered under the DGP (45) and average
rejection rates over these combinations were computed under the null hypoth-
esis to assess the impact on test size. When α= 0, test size is close to nominal
size for sample sizes N�T ≥ 50 and r ≥ 0�3. When the decay rate α is small
and nonzero, for example when α ∈ (0�0�4), the rejection rate decreases as r
increases for given N and T . The rejection rate also decreases rapidly as α
increases. Of course, when α > 0, asymptotic theory shows that test size con-
verges to zero since the t statistic diverges to positive infinity as N�T → ∞ in
this case. Further, when r increases, test power declines because the effective
sample size is smaller, which reduces discriminatory power. Thus, since α is
unknown, practical considerations suggest choosing a value of r for which size
will be accurate when α is close to zero, for which size is not too conservative
when α is larger, and for which power is not substantially reduced by the ef-
fective sample size reduction. The simulation results indicate that r ∈ [0�2�0�3]
achieves a satisfactory balance. When T is small or moderate (T ≤ 50, say),
r = 0�3 seems to be a preferable choice to secure size accuracy in the test for
small α, and when T is large (T ≥ 100, say), the choice r = 0�2 seem satisfac-
tory in terms of size and this choice helps to raise test power. Panels A and B
of Figure 3 provide a visualization of the effects of different choices of r on
actual size when α= 0 and α= 0�1 for various T .

9http://homes.eco.auckland.ac.nz/dsul013/working/power_size.xls.

http://homes.eco.auckland.ac.nz/dsul013/working/power_size.xls
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FIGURE 3.—Effects of r on rejection rates under H0� ρi ∈ (0�0�9)� for nominal size 5%.

Next, we review the effects of varying the choice of L(t) in the formula-
tion of the log t regression equation. To do so, we standardize (45) so that
Var(εit) = σ2

i t
−2α. Hence, the true model for δit (and the DGP used in the

simulation) does not involve a slowly varying function, whereas the fitted log t
regression involves some slowly varying function L(t). The inclusion of L(t)
in the regression then plays the role of a penalty function and we consider
the effects of the presence of this variable in the form of the four functions
L(t) = log t, 2 log t, log log t, and 2 log log t, calculating the corresponding re-
jection rates for the tests in each case. Note that when α= 0 in the true DGP,
convergence no longer holds and the test diverges to negative infinity, as in
the asymptotics of Theorem 2. For α > 0� test size should converge to zero
as N�T → ∞� just as in the correctly specified case. However, simulations
show that for very small α (α= 0�01, say) there are substantial upward size dis-
tortions when L(t) = 2 log t� whereas the test is conservative for L(t) = log t,
2 log log t, and log log t. Test power is reduced when L(t) = 2 log log t and
log log t in comparison with L(t)= log t. Hence, among these possibilities, the
function L(t)= log t produces the least size distortion and the best test power
as N and T increase. A full set of simulation results is available online.10

Based on these experiments, we recommend setting r = 0�3 and suggest
L(t)= log t for the slowly varying function in the log t regressions. These set-
tings are used in the remaining experiments.

For the remaining simulations we set T = 10�20�30�40 and N = 50�100�
200. Since the size of the test is accurate to two decimal place when α = 0
and power is close to unity for moderately large T (T ≥ 50), these results are
not reported here. The number of replications was R= 2000� We consider the
following four cases.

10http://homes.eco.auckland.ac.nz/dsul013/working/logtcomp.xls.

http://homes.eco.auckland.ac.nz/dsul013/working/logtcomp.xls
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Case 1: Pure Convergence. To check the size of the test, we set δi = 1 for all
i and α= 0�01�0�05�0�1�0�2. When α > 0�2� the test size is zero for all T and
N� confirming that the limit theory is accurate for small T and N in this case.
To measure the bias in the estimate of the speed of convergence, b̂, we used
α= 0�05, 0�1, and 0�5.

Case 2: Divergence. We set δi ∼U[1�2].

Case 3: Club Convergence. We considered two equal sized convergence clubs
in the panel with numbers S1 = S2 = 50 and overall panel sizeN = 100. For the
first panel, we set δ1 = 1, and for the second panel, we set δ2 = [1�1�1�2�1�5] to
allow for different distances between the convergence clubs.

Case 4: Sorting Procedure. Two convergence clubs as in Case 3, but with
δ1 = 1 and δ2 = 1�2� We consider various convergence rates with α =
(0�01�0�05�0�1�0�2) and with ρ= 0�5�

Table I gives the actual test size. The nominal size is fixed to be 5%. When the
speed of convergence parameter α is very close to zero, there is size distortion
for small T . However, this distortion diminishes quickly when T increases or as
α increases. As α increases, the test becomes conservative. Rejection rates in
the test are expected to go to zero when α> 0 as T�N → ∞ since the limit the-
ory in Theorem 1 shows that the regression t statistic (centered on the origin)
diverges to positive infinity in this case.

TABLE I

SIZE OF THE log t TEST (5% NOMINAL SIZE)

ρ ∈ [0�0�5] ρ ∈ [0�0�9]
T N α= 0�01 α= 0�05 α= 0�1 α= 0�2 α= 0�01 α= 0�05 α= 0�1 α= 0�2

10 50 0.30 0.21 0.13 0.04 0.25 0.18 0.10 0.03
10 100 0.40 0.26 0.12 0.02 0.32 0.22 0.10 0.01
10 200 0.56 0.32 0.12 0.01 0.41 0.24 0.08 0.00

20 50 0.15 0.09 0.03 0.00 0.13 0.07 0.03 0.00
20 100 0.18 0.08 0.01 0.00 0.14 0.05 0.01 0.00
20 200 0.23 0.07 0.01 0.00 0.17 0.04 0.00 0.00

30 50 0.09 0.05 0.01 0.00 0.10 0.04 0.01 0.00
30 100 0.14 0.03 0.00 0.00 0.10 0.02 0.00 0.00
30 200 0.14 0.02 0.00 0.00 0.10 0.01 0.00 0.00

40 50 0.09 0.03 0.01 0.00 0.07 0.03 0.00 0.00
40 100 0.09 0.02 0.00 0.00 0.08 0.02 0.00 0.00
40 200 0.11 0.01 0.00 0.00 0.08 0.01 0.00 0.00
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TABLE II

MEAN VALUES OF THE ESTIMATED SPEED OF CONVERGENCE

ρ ∈ [0�0�5] ρ ∈ [0�0�9]
T N b= 0�1 b= 0�2 b= 1�0 b= 0�1 b= 0�2 b= 1�0

10 50 −0�09 0.00 0.84 −0�06 0.05 0.96
10 100 −0�11 0.00 0.84 −0�06 0.05 0.96
10 200 −0�10 0.00 0.84 −0�06 0.05 0.95

20 50 0�01 0.12 0.93 0�06 0.15 1.06
20 100 0�02 0.12 0.93 0�06 0.17 1.06
20 200 0�02 0.12 0.93 0�05 0.16 1.06

30 50 0�06 0.16 0.96 0�07 0.18 1.04
30 100 0�05 0.15 0.95 0�07 0.18 1.04
30 200 0�05 0.15 0.96 0�07 0.18 1.04

40 50 0�07 0.17 0.97 0�08 0.18 1.02
40 100 0�07 0.16 0.97 0�08 0.18 1.02
40 200 0�07 0.17 0.97 0�08 0.18 1.02

Table II shows the mean values of b̂� When α is small, there is a some-
what mild downward bias for small T� which arises from the correlation be-
tween the log t regressor and the second order terms in ut . The direction of
the correlation is negative since in the expansion, the second order term of
ut , L(t)−2t−2αψ2

t /δ
2, is negatively correlated with L(t). The bias is dependent

on the size of T and α rather than N , just as the asymptotic theory predicts,
when α is small. This downward bias quickly disappears for larger T or as α
increases.

Table III shows the power of the test without size adjustment. For Case 2,
the power becomes 1, irrespective of the values of α, T , and N . For Case 3,
the log t test distinguishes well whether there is club convergence or not, even
with small T and α� except when δ1 is very close to δ2� For δ1 − δ2 = 0�1� the
rejection rate is more than 50% with α= 0�01 for T = 10� and increases rapidly
as T or N grows.

Figure 4 shows how the empirical clustering procedure suggested in the pre-
vious section works. Overall the results are encouraging. Panels A and B in
Figure 4 display the size and power of the clustering test across various critical
values with α = 0 and α = 0�2, respectively. When α > 0, the size of the clus-
tering test—measuring the failure rate of including convergence members in
the correct subconvergence club—goes to zero asymptotically since tb̂ tends to
positive infinity under the null of convergence as T → ∞.

As asymptotic theory predicts, the size of the clustering test goes to zero as T
increases in this case. Meanwhile, the power of the clustering test—the success
rate in excluding nonconvergence members from the correct subconvergence
club—goes to unity asymptotically regardless of the critical values used. How-
ever, in finite samples, test power is less than unity and, as larger critical values
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TABLE III

THE POWER OF THE log t TEST (5% TEST)

δ1 = 1

T N α δi −U[1�2] δ2 = 1�5 δ2 = 1�2 δ2 = 1�1

10 50 0.01 1.00 1.00 0.93 0.57
10 100 0.01 1.00 1.00 0.99 0.77
10 200 0.01 1.00 1.00 1.00 0.92

20 50 0.01 1.00 1.00 0.99 0.61
20 100 0.01 1.00 1.00 1.00 0.82
20 200 0.01 1.00 1.00 1.00 0.97

30 50 0.01 1.00 1.00 1.00 0.69
30 100 0.01 1.00 1.00 1.00 0.89
30 200 0.01 1.00 1.00 1.00 0.99

40 50 0.01 1.00 1.00 1.00 0.78
40 100 0.01 1.00 1.00 1.00 0.95
40 200 0.01 1.00 1.00 1.00 1.00

10 50 0.05 1.00 1.00 0.93 0.59
10 100 0.05 1.00 1.00 1.00 0.77
10 200 0.05 1.00 1.00 1.00 0.91

20 50 0.05 1.00 1.00 0.99 0.64
20 100 0.05 1.00 1.00 1.00 0.81
20 200 0.05 1.00 1.00 1.00 0.96

30 50 0.05 1.00 1.00 1.00 0.73
30 100 0.05 1.00 1.00 1.00 0.91
30 200 0.05 1.00 1.00 1.00 0.99

40 50 0.05 1.00 1.00 1.00 0.84
40 100 0.05 1.00 1.00 1.00 0.96
40 200 0.05 1.00 1.00 1.00 1.00

are employed in the selection procedure, we do find higher power in the test.
Panels C and D show the sum of the type I and II errors in this procedure
against various significance levels when α= 0 and α= 0�2� respectively. As T
increases, the size and the type II error of the clustering test both go to zero.
There is some trade-off between the type I and II errors, and in finite samples,
the power gain by using higher significance level seems to exceed the size loss.
Hence, for both cases α = 0 and α = 0�2, the use of a sign test (that is, a test
in which the critical value is zero at the 50% significance level) minimizes the
sum of the type I and II errors for small T (that is, T = 20�50 in panel C). For
larger values of T (T = 100�200 in panel C), a lower nominal significance level
minimizes the sum of the two errors when α = 0 (in panel C, these nominal
significance levels are 40% for T = 100 and 20% for T = 200, and these cases
are marked in the chart). When α= 0�2� the sign test minimizes the sum of the
type I and type II errors for all values of T , as is clear in panel D.
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FIGURE 4.—Effect of nominal critical value choice on test performance.

Figure 5 shows the finite sample performance of the core group selection
procedure based on the maxk tk rule. Panel A in Figure 5 shows the false inclu-
sion rates of nonconvergence members into a core group. As T increases or as
α increases, the max t rule appears to sieve individuals very accurately. Even
when α = 0, more than 99% of the time the max t rule does not include any
nonconvergence member into a core group when T ≥ 100. Panel B in Figure 5
shows the size of the core groups selected for various values of α and T . As α
and T increase, the size of the core group increases steadily and approaches
the true size of the convergence club (51) for some configurations.

6. EMPIRICAL APPLICATION TO CALCULATING THE COST OF LIVING

We provide an empirical application to illustrate the usefulness of the time
varying nonlinear factor model and the operation of the log t regression test
for convergence and clustering. The example shows how to calculate a proxy
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FIGURE 5.—Performance of the max t rule in core group selection.

for cost of living indices by using 19 consumer price indices (CPI’s) for U.S.
metropolitan areas. Measuring the cost of living by statistical indices has been
a long-standing problem of econometrics that has many different contributions
and much controversy.11 A number of commercial web sites now provide vari-
ous online cost of living indices. From a strict economic perspective, the most
appropriate calculations for cost of living indices take account of the changing
basket of commodities and services over time as well as nonconsumer price
information such as local taxation, health and welfare systems, and economic
infrastructure; while relevant, such matters are beyond the scope of many stud-
ies, including the present analysis. Here we constrain ourselves to working
with cost of living indices obtained directly from commonly available consumer
price information for 19 different metropolitan areas.

Our goal is to measure the relative cost of living across various metropolitan
areas in the United States and to illustrate our empirical approach by exam-
ining evidence for convergence in the cost of living. We use the relative tran-
sition parameter mechanism to model individual variation, writing individual
city CPI as

logPoit = δoit logPot + eit�(46)

where logPoit is the log CPI for the ith city, logPot is the common CPI trend
across cities, and eit contains idiosyncratic business cycle components. The em-
pirical application is to 19 major metropolitan U.S. cities from 1918 to 2001.
Appendix D gives a detailed description of the data set.

It is well known that consumer price indices cannot be used to compare the
cost of living across U.S. cities because of a base year problem. For example, if

11See the Journal of Economic Perspectives, 12, issue 1, for a recent special issue dealing with
cost of living indices.
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the base year were taken to be the last time period of observation, then the CPI
indices would seem to converge because the last observations are identical. To
avoid such artificial forms of convergence, we take the first observation as the
base year and rewrite the data as logPit = log(Poit/P

o
i1)= logPoit − logPoi1, from

which we obtain logPit = [δoit −δoi1(logPo1 / logPot )+ (eit − ei1)/ logPot ] logPot =
δit logPot . The common price index Pot usually has a trend component, so that
we have logPot = Op(t

α) for some α > 0. For instance, if logPot follows a ran-
dom walk with drift, we have logPot = a+ logPot−1 + εt = at + ∑t

s=1 εs =Op(t).
Then logPo1 / logPot = op(1) and (eit − ei1)/ logPot = op(1) for large t, so the
impact of the initial condition on δit disappears as t → ∞� and more rapidly
the stronger the trend (or larger α). Cyclical effects are also of smaller magni-
tude asymptotically. Of course, these effects may be smoothed out using other
techniques such as various filtering devices.

Figure 6 shows the cross sectional maximum, minimum, and median of the
period-by-period log consumer price indices across the 19 U.S. cities. Due to
the base year initialization, the CPI’s in 1918 are identical, but the initial ef-
fects seem to have dissipated in terms of the observed dispersion in Figure 6
within two decades. To avoid the base year effect in our own calculations, we
discard the first 42 annual observations. The relative transition parameters for
8 major metropolitan cities over the subsequent period 1960–2000 are plotted
in Figure 7 after smoothing the CPI’s using the WHP filter. The transition pa-
rameter curves provide relative cost of living indices across these metropolitan
areas.

As is apparent in Figure 7, San Francisco shows the highest cost of living;
Seattle is in second place. Chicago has the median cost of living among the
19 cities at the end of the sample and Atlanta has the lowest cost of living,

FIGURE 6.—Min, max, and median of consumer price indices.
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FIGURE 7.—Relative transition curves (relative cost of living).

again with little transition. Also apparent is that the cost of living indices in
Houston and St. Louis have declined relatively since 1984, while those in New
York, Seattle, and San Francisco have increased. The estimated equation for
the overall log t regression with r = 1/3 is

log
H1

Ht

− 2 log log t = 0�904 − 0�98 log t�
(14�3) (−51�4)

which implies that the null hypothesis of convergence in the relative cost of
living is clearly rejected at the 5% level.

Next, we investigate the possibility of club convergence in cost of living in-
dices among cities. Following the steps suggested in the previous section, we
order the CPI’s based on the last time series observation (Step 1) and dis-
play them in the first column of Table IV. Note that for further convenience
(based on the convergence results we obtain below), we changed the order
between New York (NYC) and Cleveland (CLE) metro. Based on this order-
ing, we choose San Francisco as the base city in the ordering, run the log t
regression by adding further cities one by one, and calculate the t statistics
until the t statistic is less than −1�65 (Step 2). Proceeding in this way, we
find that tk = 6�1�−0�7�1�4� and −7�8 for k = {1�2}, {1�2�3}, {1�2�3�4}, and
{1�2�3�4�5}, respectively. When we add Minnesota, the tk statistic becomes
tk = −7�8 and we stop adding cities. The tk statistics are maximized for the
group k= {1�2} and so the core group is taken to be San Francisco and Seat-
tle. Next, working from this core group, we add one city at a time and print out
its t statistic in the third column of Table IV. We use the 50% critical value (or
sign test), based on our findings in the Monte Carlo experiments. Only when
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TABLE IV

CLUB CONVERGENCE OF COST OF LIVING INDICES AMONG 19 U.S. METROPOLITAN CITIES

Last T
Order

t value
log t
Test

log t
TestName Step 1 Step 2 Club Name Step 1 Step 2 Club

1 SFO Base Core
Core

0�7

 tS1 = 0�71
tS2 = 8�18

2 SEA 6.1 S1 tSc2 = −0�68
4 NYC 1�4
3 CLE −0�7 −0�7

−51�0
−12�2
−2�4
−3�7

−14�9
−28�8
−12�0
−35�6
−46�9
−50�3

−124�4
−16�7

−134�6
−116�5
−20�7



Sc1 tSc1 = −54�6

CLE Base Core S2

S25 MIN −7�8 MIN 1.0 Core
6 LAX LAX −1.7 −1.7 Sc2
7 POR POR 5.3 S2

S2

S2

8 BOS BOS 13.9
9 CHI CHI 6.1

10 BAL BAL −19.9 Sc2
11 PHI PHI 7.6 S2

12 PIT PIT −1�6
−18�1
−34�6
−4�9

−12�3
−28�0
−14�1
−67�2

Sc2
13 CIN CIN Sc2
14 STL STL Sc2
15 DET DET Sc2
16 WDC WDC Sc2
17 HOU HOU Sc2
18 KCM KCM Sc2
19 ATL ATL Sc2

New York (NYC) is added to the core group, is the t statistic still positive. The
log t regression with these three cities gives a t statistic of 0�71, and the null hy-
pothesis of convergence cannot be rejected. Hence the first convergence club,
S1, includes SFO, SEA, and NYC.

For the remaining 16 cities (Sc1), the log t test rejects the null of convergence
even at the 1% level (tSc1 = −54�6). Hence, we further analyze the data for
evidence of club convergence among these 16 cities. Repeating the same pro-
cedure again, we find the next core group as Cleveland (CLE) and Minneapo-
lis/St. Paul (MIN), and select 4 other cities (POR, BOS, CHI, and PHI) for the
second subgroup, S2. The log t test with these 6 cities does not reject the null
of convergence (tS2 = 8�2). Further, the log t test with the remaining 10 cities
does not reject the null either (tSc2 = −0�68) at the 5% level. Hence with the
last group, there is rather weak evidence for convergence.

Figure 8 shows the relative transition parameters with the cross sectional
means of the three convergence clubs. The transition curves indicate that the
three clubs show some mild evidence of convergence until around 1982, but
that after this there is strong evidence of divergence. In sum, the evidence is
that the relative cost of living across 19 major U.S. metropolitan areas does
not appear to be converging over time. However, there is some evidence of
recent convergence clustering among three different metropolitan subgroups:
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FIGURE 8.—Relative transition curves across clubs.

one with a very high cost of living, one with a moderate cost of living, and one
that is relatively less expensive than the other two groups.

7. CONCLUSION

This paper has proposed a new mechanism for modeling and analyzing eco-
nomic transition behavior in the presence of common growth characteristics.
The model is a nonlinear factor model with a growth component and a time
varying idiosyncratic component that allows for quite general heterogeneity
across individuals and over time. The formulation is particularly useful in mea-
suring transition toward a long run growth path or individual transitions over
time relative to some common trend, representative, or aggregate variable.
The formulation also gives rise to a simple and convenient time series regres-
sion test for convergence. This log t convergence test further provides the basis
for a stepwise clustering algorithm that is proposed for finding convergence
clusters in panel data and analyzing transition behavior between clusters. The
tests have good asymptotic properties, including local discriminatory power,
and are particularly easy to apply in practice. Simulations show that the pro-
posed log t test and the clustering algorithm both work very well for values of
T and N that are common in applied work. The empirical application reveals
some of the potential of these new procedures for practical work.

Some extensions of the procedures seem worthwhile to pursue in later work.
In particular, the procedures are developed here for panels of a scalar vari-
able and will need to be extended when there are many variables. For exam-
ple, to analyze issues of convergence and clustering in the context of potential
relationships between two panel variables such as personal expenditure and
income, the concepts and methods in the paper must be modified, possibly by
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working with panel regression residuals or through panel vector autoregression
and error correction formulations.

In addition, our procedures have been developed primarily for cases where
there is a single common growth factor. The approach has the advantage that it
is applicable regardless of the form of the generating mechanism for this com-
mon factor. In practical work, of course, there may be several relevant factors.
General factor-analytic techniques are designed to address situations where
there may be multiple factors and where the number of factors is unknown.
These techniques have received attention in past econometric work (e.g., Sar-
gent and Sims (1997)) and in recent large multidimensional panel modeling
(e.g., Bai and Ng (2002)). In such work, investigators may use data based meth-
ods to search for the number of commonalities. In the present approach, there
is a presumption that one growth factor dominates the commonalities for large
t under the null hypothesis of convergence. But, as seen in some of the exam-
ples of Section 2 and the empirical application to city cost of living, sometimes
the alternative hypothesis will be more relevant in practice. The methods de-
veloped here continue to apply in such situations, allowing for different sub-
group behavior in which multiple factors may indeed be present, manifesting
themselves in the form of the individual or subgroup transition effects.
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APPENDIX A: STANDARDIZING GROWTH COMPONENTS

This appendix analyses how the growth components in the decomposition

Xit = ait + git =
(
ait + git
µt

)
µt = δitµt

may be standardized to yield the transition and growth curves discussed in Sec-
tion 3. We let t → ∞ and characterize the limiting behavior of the components
δit and µt .

We first proceed as if the growth components were nonstochastic. Suppose
git = fi(t) is regularly varying at infinity with power exponent γi (e.g., see
Seneta (1976) for a discussion of regularly varying functions) so that

fi(t)= tγiWi(t)�(47)

mailto:peter.phillips@yale.edu
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where Wi(t) is slowly varying at infinity, namely Wi(λt)/Wi(t)→ 1 as t → ∞
for all λ > 0. For example, we might have Wi(t)= log t, log2 t� or log log t. Sim-
ilarly, let µt be regularly varying at infinity with power exponent γ > 0 so that

µt = tγZ(t)(48)

for some slowly varying function Z(t). The regular variation requirement
means that fi(t) and µt both behave asymptotically very much like power func-
tions for large t. In the simplest case where the common growth component is
a linear drift (i.e., µt = t) and git/t →m for all i as t → ∞, there is growth con-
vergence and we have γi = γ = 1 and Wi(t) = Z(t) = 1. Conditions (47) and
(48) allow for a much wider variety of asymptotic behavior, including the pos-
sibility that individual i economy’s growth may deviate from the common path
(when γi �= γ) and that there may be a slowly varying component in the growth
path. For example, if γ = 0 and Z(t) = log t� then µt evolves logarithmically
with t and growth is therefore slower than any polynomial rate.

Set t = [Tr] for some r > 0 representing the fraction of the overall sample T
corresponding to observation t. Then under (47),

T−γigit = T−γi [Tr]γi Wi(T r)

Wi(T)
Wi(T)∼ rγiWi(T )(49)

and

T−γµt = T−γ[Tr]γ Z(T r)
Z(T)

Z(T)∼ rγZ(T)�

We deduce from this asymptotic behavior and (5) that

T−γiXit = ait + git
T γi

= ait

T γi
+ git

T γi
∼ rγiWi(T )�

T−γµt ∼ rγZ(T)= µ(r)Z(T)�
where µ(r)= rγ� Writing, as in (5),(

ait + git
µt

)
µt = δitµt�

we then have

1
Tγi

(
ait + git
µt

)
µt = ait

T γi
+ git

T γi
T γ

µt

(
µt

T γ

)
= o(1)+ git

T γi
T γ

µt

(
µt

T γ

)
∼ {rγi−γJi(T )}{rγZ(T)}
= δJiT (r)µ

Z
T (r)�
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where the ratio Ji(T )=Wi(T)/Z(T) is also slowly varying at infinity. Thus, the
functions δJiT (r) and µZT (r) are regularly varying and behave asymptotically like
the power functions rγi−γ and rγ , at least up to slowly varying factors.

Next set diT = TγiJi(T )Z(T)= TγiWi(T ), so that the slowly varying compo-
nents are factored into the standardization. Then, for t = [Tr], we have

1
diT
Xit = 1

TγiJi(T )Z(T)

(
ait + git
µt

)
µt

= ait

T γiWi(T )
+ git

T γiWi(T )

(
TγZ(T)

µt

)(
µt

T γZ(T)

)
= o(1)+ git

T γiWi(T )

(
TγZ(T)

µt

)(
µt

T γZ(T)

)
= o(1)+ δiT

(
t

T

)
µT

(
t

T

)
(50)

∼ δiT (r)µT (r)�(51)

In (50), we define

µT

(
t

T

)
= µt

T γZ(T)
= µt

tγZ(t)

(
tγZ(t)

T γZ(T)

)
=

(
t

T

)γ Z( t
T
T )

Z(T)
�(52)

and in a similar manner,

δiT

(
t

T

)
=

(
t

T

)γi−γ Wi(
t
T
T )Z(T)

Wi(T)Z(
t
T
T )
�(53)

Then, for t = [Tr], we have

δiT (r)→ δi(r)= rγi−γ(54)

and

µT(r)→ µ(r)= rγ�(55)

Relations (51)–(55) lead to a nonstochastic version of the stated result (18).
For a stochastic version, we may continue to assume that the standardized rep-
resentation (51) applies with an op(1) error uniformly in t ≤ T and require
that

δiT (r)→p δi(r)= rγi−γ�
µT (r)→p µ(r)= rγ
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uniformly in r ∈ [0�1], so that the limit transition function δi(r) and growth
curve µ(r) are nonrandom functions.

More generally, the limit functions δi(r) and µ(r) may themselves be sto-
chastic processes. For example, if the common growth component µt in log yit
is a unit root stochastic trend, then by standard functional limit theory (e.g.,
Phillips and Solo (1992)) on a suitably defined probability space

T−1/2µ[Tr] = µT(r)→p B(r)(56)

for some Brownian motion B(r). In place of (47), suppose that fi(t) = git/µt
is stochastically regularly varying at infinity in the sense that fi(t) continues to
follow (47) for some power exponent γi, but with Wi(t) stochastically slowly
varying at infinity, that is, Wi(λt)/Wi(t)→p 1 as t → ∞ for all λ > 0. Then, in
place of (49) we have

1
Tγi

git

µt
= [Tr]γi

T γi
Wi(T r)

Wi(T)
Wi(T)∼ rγiWi(T )�

Setting diT = Tγi+1/2Wi(T) and t = [Tr], and working in the same probability
space where (56) holds, we have

d−1
iT Xit = ait

T γi+1/2Wi(T)
+ 1
TγiWi(T )

(
git

µt

)(
µt√
T

)
= op(1)+ δiT (r)µT (r)→p δi(r)B(r)

with δi(r)= rγi . In this case the limiting common trend function is the stochas-
tic process µ(r)= B(r) and the transition function is the nonrandom function
δi(r)= rγi .

APPENDIX B: ASYMPTOTIC PROPERTIES OF THE log t CONVERGENCE TEST

B.1. Derivation of the log t Regression Equation

We proceed with the factor model (2) and the semiparametric representa-
tion (24), written here as

δit = δi + σitξit = δi + σiξit

L(t)tα
:= δi + ψit

L(t)tα
(57)

for some σi > 0� t ≥ 1 and where the various components satisfy Assump-
tions A1–A4. From (27) we have

ψNt :=
√
Nψt = 1√

N

N∑
i=1

ψit ⇒ N(0� v2
ψ)= ξψt� say,(58)
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where v2
ψ = p limN→∞N−1

∑N

i=1ψ
2
it = limN→∞N−1

∑N

i=1σ
2
i . So ψt = Op(N

−1/2)
and

ψ2
t =N−1ψ2

Nt =N−2
N∑
i=1

ψ2
it +N−2

∑
i �=j
ψitψjt(59)

=N−2
N∑
i=1

σ2
i +N−2

N∑
i=1

σ2
i (ξ

2
it − 1)+ 2N−2

N∑
i=2

i−1∑
j=1

ψitψjt

= Op(N
−1)�

From (2) and the definition of hit , we have

hit − 1 = δit − 1
N

∑
i δit

1
N

∑
i δit

= δi − δ̄+ (ψit −ψt)/(L(t)tα)
δ̄+ψt/(L(t)tα)

�(60)

where δ̄ = N−1
∑

i δi. Under the null H0 of a homogeneous common trend
effect, we have δi = δ for all i and δ �= 0 in view of Assumption A2. Then

hit − 1 = 1
L(t)tα

ψit −ψt
δ+ψt/(L(t)tα) �

(hit − 1)2 = (ψit −ψt)2

ψ2
t +L(t)2t2αδ2 + 2δL(t)tαψt

�

and

Ht = 1
N

N∑
i=1

(hit − 1)2 =
1
N

∑N

i=1(ψit −ψt)2

ψ2
t +L(t)2t2αδ2 + 2δL(t)tαψt

�(61)

Let σ2
ψt

=N−1
∑N

i=1(ψit −ψt)2 =N−1
∑N

i=1ψ
2
it −ψ2

t , so that by Assumptions A2
and A3 and (59) we have

σ2
ψt

=N−1
N∑
i=1

σ2
i ξ

2
it −N−2

N∑
i=1

σ2
i −N−2

N∑
i=1

σ2
i (ξ

2
it − 1)(62)

− 2N−2
N∑
i=2

i−1∑
j=1

ψitψjt

= N − 1
N2

N∑
i=1

σ2
i + N − 1

N2

N∑
i=1

σ2
i (ξ

2
it − 1)− 2

N2

N∑
i=2

i−1∑
j=1

ψitψjt

= v2
ψN +N−1/2ηNt −N−1η2Nt�
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where v2
ψN = N−1(1 − N−1)

∑N

i=1σ
2
i → v2

ψ as N → ∞, ηNt = N−1/2(1 −
N−1)

∑N

i=1σ
2
i (ξ

2
it − 1), and η2Nt = 2N−1

∑N

i=2

∑i−1
j=1ψitψjt . In view of (28), we

have

ηNt ⇒N(0� v4ψ(µ4ξ − 1)) := ξ2ψt� say, as N → ∞�

so that ηNt = Op(1) as N → ∞. Further, since the limit variate ξ2ψt depends
on {(ξ2

it − 1)}∞
i=1, it retains the same dependence structure over t as (ξ2

it − 1).
Indeed, expanding the probability space in a suitable way, we may write ηNt =
ξ2ψt + op(1), and partial sums over t satisfy a functional law

T−1/2
[Tr]∑
t=1

ξ2ψt ⇒ V2(r)�

where V2 is Brownian motion with variance limN→∞N−1
∑N

i=1σ
4
i ω2ii� which is

a sequential functional convergence version of (30). Assumption A3 requires
that the following central limit law hold jointly as both N�T → ∞:

T−1/2N−1/2
T∑
t=1

N∑
i=1

σ2
i (ξ

2
it − 1)⇒N

(
0� lim

N→∞
N−1

N∑
i=1

σ4
i ω2ii

)
�(63)

Primitive conditions for this result may be developed along the lines of Phillips
and Moon (1999). Note also that, in view of (30),N−1T−1

∑T

t=1

∑N

i=1σ
2
i (ξ

2
it −1)

has an asymptotic mean squared error of order O(N−1T−1), so that

T−1
T∑
t=1

σ2
ψt

= v2
ψN +Op(N−1/2T−1/2)�(64)

Finally, we observe that in view of the independence of the ξit across i, it fol-
lows by standard weak convergence arguments that

η2Nt = 2N−1
N∑
i=2

i−1∑
j=1

ψitψjt ⇒ 2
∫ 1

0
Ut(r)dUt(r)�(65)

where Ut(r) is a Brownian motion with variance v2
ψ = limN→∞N−1

∑N

i=1σ
2
i .

Thus, η2Nt = Op(1) as N → ∞. Further, in view of (31), we have the joint
convergence

T−1/2
T∑
t=1

N−1
N∑
i=2

i−1∑
j=1

ψitψjt

⇒N

(
0� lim

N→∞
N−2

N∑
i=2

i−1∑
j=1

σ2
i σ

2
j

∞∑
h=−∞

γi(h)γj(h)

)
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as N�T → ∞.
We now proceed with the derivation of the regression equation for Ht . Un-

der H0, we can write

Ht =
σ2
ψt

ψ2
t +L(t)2t2αδ2 + 2δL(t)tαψt

(66)

=
(

1
L(t)2t2α

)
σ2
ψt
/δ2

1 +L(t)−2t−2αψ2
t /δ

2 + 2L(t)−1t−αψt/δ

and

H1 = σ2
ψ1

ψ2
1 +L(1)2δ2 + 2δL(1)ψ1

�

which is independent of α� Let logH1 = h1� Taking logs yields

log
H1

Ht

= logH1 − logHt = h1 − logHt(67)

and, using (62), we have

logHt = log
[
v2
ψN +N−1/2ηNt −N−1η2Nt

δ2

]
− 2 logL(t)− 2α log t(68)

− log
{

1 + L(t)−2t−2αψ2
t

δ2
+ 2L(t)−1t−αψt

δ

}
= −2 logL(t)− 2α log t + log

{
v2
ψN

δ2

}
+ εt�

where

εt = log
[

1 + N−1/2ηNt

v2
ψN

− η2Nt

Nv2
ψN

]
(69)

− log
{

1 + L(t)−2t−2αψ2
t

δ2
+ 2L(t)−1t−αψt

δ

}
�

Even if α= 0� we can still expand the logarithm in the second term of the above
expression for εt since the slowly varying factor L(t)−1 → 0 for large t. Define
λt = L(t)−1t−αψt/δ and ζt = λ2

t + 2λt� and using the expansion log(1 + ζt) =
ζt − 1

2ζ
2
t + o(ζ3

t ) and (59), we get

log(1 + ζt)= λ2
t + 2λt − 1

2
(λ2

t + 2λt)2 + op(L(t)−3t−3αψ3
t )
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= 2λt − 1
2
λ4
t − 2λ3

t − λ2
t + op(L(t)−3t−3αψ3

t )

= 2L(t)−1t−αψt
δ

− L(t)−2t−2αψ2
t

δ2
+Op

(
1

L(t)3t3αN3/2

)
�

so that since N → ∞,

εt = log
{

1 + N−1/2ηNt

v2
ψN

− η2Nt

Nv2
ψN

}
− 2L(t)−1t−αψt

δ
+ L(t)−2t−2αψ2

t

δ2
(70)

+Op
(

1
L(t)3t3αN3/2

)
=

{
N−1/2ηNt

v2
ψN

+ εNt
}

− 2L(t)−1t−αψt
δ

+ L(t)−2t−2αψ2
t

δ2
(71)

+Op
(

1
L(t)3t3αN3/2

)
�

where

εNt = − η2Nt

Nv2
ψN

− 1
2N

η2
Nt

v4
ψN

+Op(N−3/2)(72)

= − 1
2N

E(ξ2
2ψt)

v4
ψN

− η2Nt

Nv2
ψN

− 1
2N

ξ2
2ψt −E(ξ2

2ψt)

v4
ψN

+Op(N−3/2)�

Expressions (67) and (68) lead to the empirical regression equation

log
H1

Ht

− 2 logL(t)= a+ b log t + ut�(73)

where

a= h1 − 2 log
vψN

δ
� b= 2α� ut = −εt�(74)

For t ≥ [Tr] and r > 0, we may write

L(t)−1t−α = 1
TαL(T)

L(T)

L(t)

1
( t
T
)α

= 1
TαL(T)

1
( t
T
)α

{1 + o(1)}

and then

ut = − 1√
N

1
v2
ψN

ηNt − εNt + 2
δ

1
tαL(t)

ψt − 1
δ2

1
t2αL(t)2

ψ2
t(75)
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+Op
(

1
L(t)3t3αN3/2

)
= − 1√

N

1
v2
ψN

ηNt − εNt + 2
δ

[ {1 + o(1)}
TαL(T)

]
1
( t
T
)α
ψt

− 1
δ2

[ {1 + o(1)}
T 2αL(T)2

]
1

( t
T
)2α
ψ2
t +Op

(
1

L(t)3t3αN3/2

)
�

Since ψt = Op(N
−1/2), εNt = Op(N

−1)� and L(T)→ ∞, the first term of (75)
dominates the behavior of the regression error ut when α≥ 0.

B.2. Proof of Theorem 1

In developing the limit theory, it is convenient to modify the regression equa-
tion (73) to avoid the singularity in the sample moment matrix that arises from
the presence of an intercept and log t in (73). Phillips (2007) provided a dis-
cussion and treatment of such issues in quite general regressions with slowly
varying regressors that includes cases such as (73). It is simplest to transform
to the equation

log
H1

Ht

− 2 logL(t)= a∗ + b log
t

T
+ ut�(76)

where a∗ = a+ b logT . This transformation clearly does not affect the estima-
tor of b.

Define the demeaned regressor

τt =
(

log
t

T
− log

t

T

)
�

where log t
T

= 1
T−[Tr]+1

∑T

t=[Tr] log t
T

. Then, empirical regression of (76) over t =
[Tr]� [Tr] + 1� � � � � T for some r > 0 yields

b̂− b=
∑T

t=[Tr] τtut∑T

t=[Tr] τ2
t

�

Note that

T∑
t=[Tr]

τ2
t =

T∑
t=[Tr]

(
log

t

T
− log

t

T

)2

(77)

= T

{∫ 1

r

(
log s− 1

1 − r
∫ 1

r

logpdp
)2

ds+ o(1)
}
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= T

{∫ 1

r

log2 s ds− 1
1 − r

(∫ 1

r

logpdp
)2

+ o(1)
}

= T

{
(1 − r)−

(
r

1 − r
)

log2 r + o(1)
}

by Euler summation and direct evaluation of the integral∫ 1

r

log2 s ds− 1
1 − r

(∫ 1

r

logpdp
)2

= (1 − r)−
{

r

1 − r
}

log2 r�

Using (75) we have

b̂− b= − 1
v2
ψN

1√
NT

∑T

t=[Tr] τtηNt + 1
T

∑T

t=[Tr] τtεNt

T−1
∑T

t=[Tr] τ2
t

(78)

+ 2
δ

1
T

∑T

t=[Tr] τtψt/(t
αL(t))

T−1
∑T

t=[Tr] τ2
t

− 1
δ2

1
T

∑T

t=[Tr] τtψ
2
t /(t

2αL(t)2)

T−1
∑T

t=[Tr] τ2
t

+Op
(

1
L(T)3T 3αN3/2

)
�

Next observe that

1√
T

T∑
t=[Tr]

τtηNt = 1√
T

1√
N

T∑
t=[Tr]

τt

N∑
i=1

σ2
i (ξ

2
it − 1)(79)

= 1√
T

√
N

N∑
i=1

T∑
t=[Tr]

(
log

t

T
− log

t

T

)
σ2
i (ξ

2
it − 1)

⇒N

(
0�ω2

η

∫ 1

r

(
log s− 1

1 − r
∫ 1

r

logpdp
)2

ds

)
= N

(
0�ω2

η

{
(1 − r)−

(
r

1 − r
)

log2 r

})
in view of (29), where ω2

η = limN→∞N−1
∑N

i=1σ
4
i ω2ii and ω2ii is the long

run variance of ξ2
it . Also noting the fact that E(ξ2

2ψt) is constant over t and∑T

t=[Tr] τt = 0, we find that

1
T

T∑
t=[Tr]

τtεNt = − 1
v2
ψN

1
NT

T∑
t=[Tr]

τtη2Nt(80)
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− 1
2v4

ψN

1
NT

T∑
t=[Tr]

τt(ξ
2
2ψt −E(ξ2

2ψt))+Op(N−3/2)

= Op

(
1√
TN

+ 1
N3/2

)
�

since both T−1/2
∑T

t=[Tr] τtη2Nt and T−1/2
∑T

t=[Tr] τt(ξ
2
2ψt −E(ξ2

2ψt)) are Op(1).
Further,

√
TN

T

T∑
t=[Tr]

τt
1

tαL(t)
ψt(81)

= 1√
TN

N∑
i=1

T∑
t=[Tr]

τt
1

tαL(t)
ψit

= 1√
TN

N∑
i=1

T∑
t=[Tr]

τt

[
1

TαL(T)

L(T)

L(t)

1
( t
T
)α
ψit

]

=
{

1
TαL(T)

{1 + op(1)}
}

× 1√
TN

N∑
i=1

T∑
t=[Tr]

(
log

t

T
− log

t

T

)(
t

T

)−α
ψit

∼ 1
TαL(T)

N

(
0�ω2

ψ

∫ 1

r

{(
log s− 1

1 − r
∫ 1

r

logpdp
)2

s−2α ds

})
=Op

(
1

TαL(T)

)
and, when α> 0, we have

1
δ2

√
TN

T

T∑
t=[Tr]

τt
1

t2αL(t)2
ψ2
t

= 1
δ2

√
TN

T

T∑
t=[Tr]

τt

[
1

t2αL(t)2

]

×
{
N−2

N∑
i=1

σ2
i +N−2

N∑
i=1

σ2
i (ξ

2
it − 1)+N−2

N∑
i�j=1
i �=j

ψitψjt

}
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=
√
TN

δ2

1
T

T∑
t=[Tr]

τt

[
1

T 2αL(T)2

(
L(T)

L(t)

)2 1
( t
T
)2α

]
v2
ψN

N{1 −N−1}

+ 1
δ2N

1√
T

×
T∑

t=[Tr]
τt

[
1

T 2αL(T)2

(
L(T)

L(t)

)2 1
( t
T
)2α

]
1√
N

N∑
i=1

σ2
i (ξ

2
it − 1)�

1
δ2N1/2

1√
T

T∑
t=[Tr]

τt

[
1

T 2αL(T)2

(
L(T)

L(t)

)2 1
( t
T
)2α

]
1
N

N∑
i�j=1
i �=j

ψitψjt

= v2
ψN

√
T {1 + o(1)}

δ2
√
NT 2αL(T)2

1
T

T∑
t=[Tr]

τt

(
t

T

)−2α

(82)

+ {1 + o(1)}
δ2NT 2αL(T)2

1√
T

T∑
t=[Tr]

τt

(
t

T

)−2α 1√
N

N∑
i=1

σ2
i (ξ

2
it − 1)

+ {1 + o(1)}
δ2N1/2T 2αL(T)2

1√
T

T∑
t=[Tr]

τt

(
t

T

)−2α
(

1
N

N∑
i�j=1
i �=j

ψitψjt

)
(83)

= v2
ψ

δ2

T 1/2

T 2αL(T)2N1/2

×
∫ 1

r

{(
log s− 1

1 − r
∫ 1

r

logpdp
)
s−2α ds

}
{1 + op(1)}

+Op
(

1

T 2αL(T)2
√
N

)
�(84)

since

1√
T

T∑
t=[Tr]

τt

(
t

T

)−2α 1√
N

N∑
i=1

σ2
i (ξ

2
it − 1)=Op(1)�

1√
T

T∑
t=[Tr]

τt

(
t

T

)−2α
(

1
N

N∑
i�j=1
i �=j

ψitψjt

)
=Op(1)
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in view of (30) and (31). When α= 0, it is apparent that

T∑
t=[Tr]

τt

(
t

T

)−2α

v2
ψ =

T∑
t=[Tr]

τtv
2
ψ = 0

in line (82) of the earlier argument, in which case the first term of (84) is zero
and the second term dominates, giving

1
δ2

√
TN

T

T∑
t=[Tr]

τt
1

L(t)2
ψ2
t =Op

(
1

L(T)2
√
N

)
�(85)

From (78) we have
√
NT(b̂− b)(86)

= − 1
v2
ψN

1√
T

∑T

t=[Tr] τtηNt +
√
N√
T

∑T

t=[Tr] τtεNt

T−1
∑T

t=[Tr] τ2
t

+ 2
δ

√
N√
T

∑T

t=[Tr] τtψt/(t
αL(t))

T−1
∑T

t=[Tr] τ2
t

− 1
δ2

√
N√
T

∑T

t=[Tr] τtψ
2
t /(t

2αL(t)2)

T−1
∑T

t=[Tr] τ2
t

+Op
( √

T

L(T)3T 3αN

)
�

and it then follows from (80)–(84) that when α> 0,

√
NT(b̂− b) = − 1

v2
ψN

1√
T

∑T

t=[Tr] τtηNt

T−1
∑T

t=[Tr] τ2
t

+Op
(

1
N1/2

+
√
T

N

)
(87)

+Op
(

1
TαL(T)

)
+Op

(
T 1/2

T 2αL(T)2N1/2

)

+Op
( √

T

L(T)3T 3αN

)

⇒ 1
v2
ψ

N

(
0�ω2

η

{
(1 − r)−

(
r

1 − r
)

log2 r

}−1)
as T�N → ∞, provided T 1/2/(T 2αL(T)2N1/2)→ 0. When α= 0, we have, using
(85),

√
NT(b̂− b)= − 1

v2
ψN

1√
T

∑T

t=[Tr] τtηNt

T−1
∑T

t=[Tr] τ2
t

+Op
(

1
N1/2

+
√
T

N

)
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+Op
(

1
L(T)

)
+Op

(
1

L(T)2
√
N

)
+Op

( √
T

L(T)3N

)
and precisely the same limit theory as (87) applies provided T 1/2/N → 0.

It follows that in both cases we have
√
NT(b̂− b)⇒N(0�Ω2), where

Ω2 = ω2
η

v4
ψ

{
(1 − r)−

(
r

1 − r
)

log2 r

}−1

�(88)

ω2
η = limN→∞N−1

∑N

i=1σ
4
i ω2ii, and v2

ψ = limN→∞N−1
∑N

i=1σ
2
i , and where ω2ii is

the long run variance of ξ2
it . This gives the required result (a).

When the relative rate condition T 1/2/(T 2αL(T)2N1/2)→ 0 does not hold,
the third term of (86) enters into the limit theory as a bias term. In particular,
we have

√
NT

{
(b̂− b)+ 1

δ2

1
T

∑T

t=[Tr] τtψ
2
t /(t

2αL(t)2)

T−1
∑T

t=[Tr] τ2
t

}

= − 1
v2
ψN

1√
T

∑T

t=[Tr] τtηNt +
√
N√
T

∑T

t=[Tr] τtεNt

T−1
∑T

t=[Tr] τ2
t

+Op
( √

T

L(T)3T 3αN

)

= − 1
v2
ψN

1√
T

∑T

t=[Tr] τtηNt

T−1
∑T

t=[Tr] τ2
t

+Op
(

1
N1/2

+
√
T

N

)
+Op

( √
T

L(T)3T 3αN

)
and using (87) we have

√
NT

{
(b̂− b)+ 1

δ2

1
T

∑T

t=[Tr] τtψ
2
t /(t

2αL(t)2)

T−1
∑T

t=[Tr] τ2
t

}
⇒N(0�Ω2)�

provided
√
T
N

→ 0. In this case, there is an asymptotic bias of the form

−v
2
ψ

δ2

1
T 2αL(T)2N

∫ 1

r

{(
log s− 1

1 − r
∫ 1

r

logpdp
)
s−2α ds

}
in the estimation of b. This bias is of O(T−2αL(T)−2N−1) and will generally
be quite small when α > 0. The bias is zero when α = 0 because

∫ 1
r
(log s −

1
1−r

∫ 1
r

logpdp)ds= 0, explaining the milder rate condition in this case.

B.3. Asymptotic Variance Formula

Since the regressor in (76) is deterministic, we may consistently estimate the
asymptotic variance Ω2 in a simple way by estimating the long run variance of
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ut using the least squares residuals ût . In particular, we may use the variance
estimate

V (b̂)= l̂varr(ût)

[
T∑

t=[Tr]
τ2
t

]−1

�

where l̂varr(ût) is a consistent estimate of N−1(δ2/v2
ψ)

2ω2
η. To construct

l̂varr(ût) we may use a conventional HAC estimate, as we now show.
We start by working directly with ut and its autocovariance sequence. From

(75) we have

√
Nut = −ηNt

v2
ψN

+ 2
{1 + o(1)}
TαL(T)

1
( t
T
)α

√
Nψt + op(1)(89)

= − 1
v2
ψN

1√
N

N∑
i=1

σ2
i (ξ

2
it − 1)+ op(1)

= − 1
v2
ψN

1√
N

N∑
i=1

σ2
i ηit + op(1) := − wt

v2
ψN

+ op(1)�(90)

where ηit = ξ2
it − 1, whose long run variance is ω2ii. The serial autocovariances

of the leading term wt = 1√
N

∑N

i=1σ
2
i ηit are E(wtwt+l) = N−1

∑N

i=1σ
4
i E(ηit ×

ηit+l), and as M → ∞, it follows that

M∑
l=−M

E(wtwt+l) = 1
N

N∑
i=1

σ4
i

M∑
l=−M

E(ηitηit+l)

= 1
N

N∑
i=1

σ4
i

{ ∞∑
l=−∞

E(ηitηit+l)+ o(1)
}

→ lim
N→∞

N−1
N∑
i=1

σ4
i ω2ii�

where limN→∞N−1
∑N

i=1σ
4
i ω2ii. Contributions to the long run variance of√

Nut from the second and higher order terms of (89) are of O(L(T)−2T−2α)

for t ≥ [Tr] and r > 0. Hence, the long run variance of
√
Nut is given by

lvar(
√
Nut)= lim

N→∞
1
v4
ψN

1
N

N∑
i=1

σ4
i ω2ii =

ω2
η

v4
ψ

:=Ω2
u say.
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Thus, the asymptotic variance formula (88) is

Ω2 = Ω2
u

{(1 − r)− ( r
1−r ) log2 r}2

�

The denominator can be directly calculated or estimated in the usual manner
with the moment sum of squares

T∑
t=[Tr]

τ2
t ∼ T

{
(1 − r)−

(
r

1 − r
)

log2 r

}
�

as shown in (77) above. The numerator,

Ω2
u = lim

N→∞
δ4

v4
ψN

1
N

N∑
i=1

σ4
i ω2ii�

is the limit of a weighted average of long run variances. As we next investigate,
it may be estimated using a long run variance estimate with the residuals of the
regression, namely Ω̂2

u = l̂varr(ût).

B.4. Estimation of the Weighted Average Long Run Variance

The sample serial covariances of the leading term wt of the regression error
ut (using the available observations in the regression from t = [Tr]� � � � � T )
have the form

1
T

∑
[Tr]≤t�t+l≤T

wtwt+l(91)

= 1
N

N∑
i�j=1

σ2
i σ

2
j

1
T

∑
[Tr]≤t�t+l≤T

ηitηjt+l

= 1
N

N∑
i=1

σ4
i

1
T

∑
[Tr]≤t�t+l≤T

ηitηit+l

+ 1√
T

[
1√
N

N∑
i=1

σ2
i

{
1√
NT

N∑
j �=i
σ2
j

∑
[Tr]≤t�t+l≤T

ηitηjt+l

}]

= 1
N

N∑
i=1

σ4
i

{
1
T

∑
[Tr]≤t�t+l≤T

ηitηit+l

}
+Op

(
1√
T

)
�
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By virtue of the usual process of HAC estimation for M → ∞ as T → ∞, we
have

M∑
l=−M

{
1
T

∑
[Tr]≤t�t+l≤T

ηitηit+l

}
→p (1 − r)ω2

2ii�

where the factor (1 − r) reflects the fact that only the fraction 1 − r of the time
series data is used in the regression. For M satisfying M√

T
+ 1

M
→ 0 as T → ∞,

we find from (91) and standard HAC limit theory that

M∑
l=−M

1
T

∑
[Tr]≤t�t+l≤T

wtwt+l(92)

= 1
N

N∑
i=1

σ4
i

{
M∑

l=−M

1
T

∑
[Tr]≤t�t+l≤T

ηitηit+l

}
+ op(1)

= 1
N

N∑
i=1

σ4
i {(1 − r)ω2

2ii + op(1)} + op(1)

→p (1 − r) lim
N→∞

N−1
N∑
i=1

σ4
i ω2ii�

Since the scaled regression residuals
√
Nût consistently estimate the quantities

−wt/v2
ψN in (90), we correspondingly have

l̂var(
√
Nût)→p (1 − r) 1

v4
ψN

lim
N→∞

N−1
N∑
i=1

σ4
i ω2ii = (1 − r)Ω2

u�

If we use a standardization of 1/(T − [Tr] + 1) rather than 1/T in the sample
serial covariances in (92), we have

M∑
l=−M

1
T − [Tr] + 1

∑
[Tr]≤t�t+l≤T

wtwt+l →p Ω
2
u�

and the corresponding estimate (where the subscript r signifies the use of the
scaling factor 1/(T − [Tr] + 1) in the sample covariance formulae)

l̂varr(
√
Nût)=

M∑
l=−M

N

T − [Tr] + 1

∑
[Tr]≤t�t+l≤T

ût ût+l →p Ω
2
u�(93)
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The same behavior is observed for other HAC estimates constructed with dif-
ferent lag kernels.

Then the asymptotic variance estimate of b̂ is

s2
b̂
= l̂varr(ût)

[
T∑

t=[Tr]
τ2
t

]−1

= 1
N

l̂varr(
√
Nût)

[
T∑

t=[Tr]
τ2
t

]−1

∼ 1
NT

Ω2
u

{
(1 − r)−

(
r

1 − r
)

log2 r

}−1

= 1
NT

Ω2�

and NTs2
b̂
→p Ω

2 as N�T → ∞. Accordingly, the t ratio tb̂ = (b̂ − b)/sb̂ ⇒
N(0�1) and result (b) follows.

B.5. Proof of Theorem 2

(a) α ≥ 0. We assume δi ∼ iid(δ�σ2
δ) and let δ̄ = N−1

∑N

i=1 δi. Under this
alternative, we have, from (60),

hit − 1 = δi − δ̄+ (ψit −ψt)/(L(t)tα)
δ̄+ψt/(L(t)tα)

�

so that

Ht = σ2

δ̄2

1 + (σ2
ψt
/σ2)L(t)−2t−2α + 2(σδψt /σ2)L(t)−1t−α

1 +L(t)−2t−2αψ2
t /δ̄

2 + 2L(t)−1t−αψt/δ̄
�(94)

where σ2 =N−1
∑
(δi − δ̄)2 →p σ

2
δ as N → ∞,

σδψt =N−1
N∑
i=1

(δi − δ̄)(ψit −ψt)=N−1/2ςNt +Op(N−1)�(95)

where ςNt = N−1/2
∑N

i=1(δi − δ̄)σiξit = Op(1), and σ2
ψt

= v2
ψN + N−1/2ηNt +

Op(N
−1) from (62) above. Note that Ht → σ2/δ̄2 > 0 as T�N → ∞.

Taking logs in (94) and assuming σ2 > 0 (otherwise the null hypothesis
holds), we have

logHt = 2 log
σ

δ̄
+ εt�

where

εt = log{1 + (σ2
ψt
/σ2)L(t)−2t−2α + 2(σδψt /σ

2)L(t)−1t−α}(96)

− log{1 +L(t)−2t−2αψ2
t /δ̄

2 + 2L(t)−1t−αψt/δ̄}�
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The generating process for log(H1/Ht) therefore has the form, under the al-
ternative,

log
H1

Ht

− 2 logL(t)= logH1 − 2 log
σ

δ̄
− 2 logL(t)− εt�(97)

while the fitted regression is

log
H1

Ht

− 2 logL(t)= â∗ + b̂ log
(
t

T

)
+ residual,(98)

so that

b̂= −
∑T

t=[Tr] τt{2 logL(t)+ εt}∑T

t=[Tr] τ2
t

�(99)

Note that t = Ta for some a > 0 and for L(t)= log t, we have

logL(t)= logL(Ta)= log{logT + loga} = log
[

logT
{

1 + loga
logT

}]
(100)

= log logT + log t
T

logT
− 1

2
log2 t

T

log2 T
+O

(
log3 t

T

log3 T

)
�

giving

logL(t)− logL(t)= log t
T

− log t
T

logT
− 1

2
log2 t

T
− log2 t

T

log2 T
+O

(
1

log3 T

)
(101)

and ∑T

t=[Tr] τt logL(t)∑T

t=[Tr] τ2
t

(102)

=
∑T

t=[Tr] τt{logL(t)− logL(t)}∑T

t=[Tr] τ2
t

= 1
logT

T−1
∑T

t=[Tr] τt
(
log t

T
− log t

T

)
T−1

∑T

t=[Tr] τ2
t

− 1

2 log2 T

T−1
∑T

t=[Tr] τt
(
log2 t

T
− log2 t

T

)
T−1

∑T

t=[Tr] τ2
t

+O
(

1

log3 T

)

= 1
logT
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− 1

2 log2 T

×
∫ 1
r

(
log s− 1

1−r
∫ 1
r

logpdp
)(

log2 s− 1
1−r

∫ 1
r

log2pdp
)
ds∫ 1

r

(
log s− 1

1−r
∫ 1
r

logpdp
)2
ds

+O
(

1

log3 T

)
= 1

logT
− g(r)

2 log2 T
+O

(
1

log3 T

)
�

where

g(r)= 2(log r)r2 − (log3 r)r + 2(log2 r)r − 2(log r)r − 4(1 − r)2

(1 − r)2 − r log2 r
�

Hence, under the alternative, we have

b̂= −
∑T

t=[Tr] τtεt∑T

t=[Tr] τ2
t

− 2
∑T

t=[Tr] τt{logL(t)− logL(t)}∑T

t=[Tr] τ2
t

(103)

= −
∑T

t=[Tr] τtεt∑T

t=[Tr] τ2
t

− 2
logT

+ g(r)

log2 T
+Op

(
1

log3 T

)
�

Next consider
∑T

t=[Tr] τtεt�Note that σδψt =N−1/2ςNt+Op(N−1)=Op(N−1/2)

from (95), ψt = Op(N
−1/2) from (58), and σ2

ψt
= v2

ψN + N−1/2ηNt + Op(N
−1)

from (62), where v2
ψN = N−1

∑N

i=1σ
2
i → v2

ψ as N → ∞ and ηNt = N−1/2 ×∑N

i=1σ
2
i (ξ

2
it − 1) = Op(1). Hence, expanding (96) for t ≥ [Tr] with r > 0, we

get

εt =
σ2
ψt

σ2

1
L(t)2t2α

+ 2
σδψt
σ2

1
L(t)tα

− 2
δ̄

1
L(t)tα

ψt +Op
(

1
NL(T)2T 2α

)
(104)

= v2
ψN

σ2

1
L(t)2t2α

+ 1
σ2

N−1/2ηNt

L(t)2t2α
+ 2

σδψt
σ2

1
L(t)tα

− 2
δ̄

1
L(t)tα

ψt

+Op
(

1
NL(T)2T 2α

)
= v2

ψN

σ2

1
L(t)2t2α

+Op
(

1√
NL(T)Tα

)
�
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It follows that

1
T

T∑
t=[Tr]

τtεt(105)

= v2
ψN

σ2

1
L(T)2T 1+2α

T∑
t=[Tr]

τt
L(T)2

L(t)2

(
t

T

)−2α

+Op
(

1√
NL(T)Tα

)

= v2
ψN

σ2

1
L(T)2T 1+2α

T∑
t=[Tr]

τt

(
t

T

)−2α

{1 + o(1)} +Op
(

1√
NL(T)Tα

)

= v2
ψN

σ2

1
L(T)2T 2α

∫ 1

r

{
log s− 1

1 − r
∫ 1

r

logpdp
}
s−2α ds {1 + o(1)}

+Op
(

1√
NL(T)Tα

)

= v2
ψN

σ2

r∗(α)
L(T)2T 2α

+Op
(

1√
NL(T)Tα

)
�

where

r∗(α)=
∫ 1

r

{
log s− 1

1 − r
∫ 1

r

logpdp
}
s−2α ds(106)

=


(2α+ 2rα log r − r log r − 2αr + 2r2−2αα+ r1−2α log r

− 2r1−2αα log r − 2r1−2αα)

/((2αr − r + 1 − 2α)(2α− 1)) with α �= 1
2 �

(ln r)r − 2r + 2 + ln r
r

with α= 1
2 �

Hence, from (103) and (77) we obtain

b̂= −
1
T

∑T

t=[Tr] τtεt
1
T

∑T

t=[Tr] τ2
t

− 2
logT

+ g(r)

log2 T
+Op

(
1

log3 T

)
(107)

= −
(
v2
ψN

σ2

)(
r∗(α)

{(1 − r)− ( r
1−r ) log2 r}

)(
1

L(T)2T 2α

)
− 2

logT

+ g(r)

log2 T
+Op

(
1

log3 T

)
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= −
(
v2
ψN

σ2

)(
r(α)

L(T)2T 2α

)
− 2

logT
+ g(r)

log2 T
+Op

(
1

log3 T

)
�

where

r(α)= r∗(α)

(1 − r)− ( r
1−r ) log2 r

�(108)

When α ≥ 0 and L(T) = logT , the second term in (107) dominates and we
have

b̂= − 2
logT

+ g(r)

log2 T
−

(
v2
ψN

σ2

)(
r(α)

L(T)2T 2α

)
+Op

(
1

log3 T

)
�(109)

Thus, b̂→p 0 in this case. Heuristically, this outcome is explained by the fact
that Ht tends to a positive constant, so that the dependent variable in (98) be-
haves like −2 logL(t)for large t. Since logL(t) is the log of a slowly varying
function at infinity, its regression coefficient on log t is expected to be zero.
More particularly, the regression of −2 logL(t) on a constant and log( t

T
) pro-

duces a slope coefficient that is negative and tends to zero like − 2
logT , as shown

in (102).
Next consider the standard error of b̂ under the alternative. Writing the

residual in (98) as ût , the long run variance estimate has the typical form

l̂varr(
√
Nût)=

M∑
l=−M

N

T − [Tr] + 1

∑
[Tr]≤t�t+l≤T

ût ût+l�(110)

In view of (97) and (98), and with L(t)= log t, we deduce from (101) and (102)
that

ût = −(εt − ε̄)− 2{logL(t)− logL(t)} − b̂
{

log
t

T
− log

t

T

}
(111)

= −(εt − ε̄)− 2
log t

T
− log t

T

logT
− b̂

{
log

t

T
− log

t

T

}
+Op

(
1

log3 T

)

= −v
2
ψN

σ2

{
1

L(t)2t2α
− 1
L(T)2T 2α

1 − r1−2α

(1 − r)(1 − 2α)

}
+

{
v2
ψN

σ2

r(α)

L(T)2T 2α
− g(r)

log2 T

}{
log

t

T
− log

t

T

}
+Op

(
1

log3 T

)
�
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using (107) and because, from (104),

1
T − [Tr]

T∑
t=[Tr]

εt(112)

= v2
ψN

σ2

1
T − [Tr]

T∑
t=[Tr]

1
L(t)2t2α

+Op
(

1√
NL(T)Tα

)

= v2
ψN

σ2

1
L(T)2T 1+2α

1
1 − r

T∑
t=[Tr]

(
t

T

)−2α

+Op
(

1√
NL(T)Tα

)

= v2
ψN

σ2

1
L(T)2T 2α

1
1 − r

∫ 1

r

s−2α ds+Op
(

1√
NL(T)Tα

)

= v2
ψN

σ2

1
L(T)2T 2α

1 − r1−2α

(1 − r)(1 − 2α)
+Op

(
1√

NL(T)Tα

)
�

In view of (111), we have, for |l| ≤M , M
T

→ 0� and t ≥ [Tr] with r > 0,

ût+l = −(εt+l − ε̄)− b̂
{

log
t + l
T

− log
t

T

}
− 2{logL(t + l)− logL(t)}

= −v
2
ψN

σ2

{
1

L(t)2t2α
[1 + o(1)] − 1

L(T)2T 2α

1 − r1−2α

(1 − r)(1 − 2α)

}
+

{
v2
ψN

σ2

r(α)

L(T)2T 2α
− g(r)

log2 T

}{
log

t

T
[1 + o(1)] − log

t

T

}
+Op

(
logL(T)√
NL(T)Tα

)
+Op

(
1

log3 T

)
= ût{1 + o(1)}�

Then

1
T − [Tr]

∑
[Tr]≤t�t+l≤T

ût ût+l(113)

= 1
T − [Tr]

∑
[Tr]≤t≤T

û2
t {1 + o(1)}
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= 1
T − [Tr]

v4
ψN

σ4

∑
[Tr]≤t≤T

{
1

L(t)2t2α
− 1
L(T)2T 2α

1 − r1−2α

(1 − r)(1 − 2α)

}2

+ 1
T − [Tr]

{
v2
ψN

σ2

r(α)

L(T)2T 2α
− g(r)

log2 T

}2 ∑
[Tr]≤t≤T

{
log

t

T
− log

t

T

}2

+ 2
T − [Tr]

v2
ψN

σ2

{
v2
ψN

σ2

r(α)

L(T)2T 2α
− g(r)

log2 T

} ∑
[Tr]≤t≤T

log t
T

− log t
T

L(t)2t2α

+Op
(

1

log4 T

)
=Op

(
1

log4 T

)
�

uniformly in l when L(T)= logT and α≥ 0� Hence, (110) becomes

l̂varr(
√
Nût)=

M∑
l=−M

N

T − [Tr] + 1

∑
[Tr]≤t�t+l≤T

û2
t {1 + o(1)}

= Op

(
NM

log4 T

)
and so

s2
b̂
= l̂varr(ût)

[
T∑

t=[Tr]
τ2
t

]−1

=Op
(

M

(log4 T)T

)[
1
T

T∑
t=[Tr]

τ2
t

]−1

(114)

= Op

(
M

(log4 T)T

)
�

Using (109) and (114), we see that the t ratio tb̂ has the asymptotic behavior,
under the alternative,

tb̂ = b̂

sb̂
= − 2

logT
÷Op

(
M1/2

(log2 T)T 1/2

)
(115)

= − 2
logT

×Op
(
(log2 T)T 1/2

M1/2

)
→ −∞

for all α≥ 0 and all bandwidth choicesM ≤ T . It follows that the test is consis-
tent. The divergence rate is O((logT)T 1/2/M1/2).
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(b) α < 0. We consider the case where α < 0 and δi = δ for all i. The case
α < 0 and δi �= δ for all i may be treated in the same way as case (a) and is
therefore omitted. Set γ = −α> 0.

When δi = δ for all i, (73) and (74) continue to hold but with α< 0 and

εt = log
[

1 +N−1/2 δ
2

v2
ψN

ηNt

]
(116)

− log{1 +L(t)−2t−2αψ2
t /δ

2 + 2L(t)−1t−αψt/δ} +Op(N−1)�

If Tγ/
√
N → 0, then both logarithmic terms of εt may still be expanded as

T�N → ∞, but now the second term dominates rather than the first. Thus, in
place of (75), we get

ut = −εt = 2
δ

tγ

L(t)
ψt +Op

(
T 2γ

L(t)2N
+ 1√

N

)
�(117)

where

ψt = 1
N

N∑
i=1

ψit = 1
N

N∑
i=1

σiξit =Op(N−1/2)�

The limit theory proceeds as in the proof of Theorem 1, but we now have
√
NTL(T)

T γ
(b̂− b)

= 2
δ

(
√
NL(T))/(

√
TTγ)

∑T

t=[Tr] τt(t
γ/L(t))ψt

T−1
∑T

t=[Tr] τ2
t

+ op(1)

= 2
δ

1√
NT

∑T

t=[Tr]
∑N

i=1 τt(
t
T
)γσiξit

T−1
∑T

t=[Tr] τ2
t

+ op(1)

⇒ 2
δ
N

(
0�ω2

ξ

∫ 1
r

{
log s− 1

1−r
∫ 1
r

logpdp
}2
s2γ ds

(1 − r)− ( r
1−r ) log2 r

)

using Assumptions A2 and A3, where ω2
ξ = limN→∞N−1

∑N

i=1σ
2
i ωii and where

1
T

T∑
t=[Tr]

τ2
t

(
t

T

)2γ

→
∫ 1

r

{
log s− 1

1 − r
∫ 1

r

logpdp
}2

s2γ ds�

Thus, if Tγ−1/2/(
√
NL(T))→ 0, b̂ is still consistent, but at a reduced rate in

comparison with the null and provided γ = −α is not too large.
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The behavior of the estimated standard error can be obtained in a similar
manner to the derivation under the null, given above. In particular, in view of
(117),

E(utut+l)= 4
N2δ2

N∑
i=1

σ2
i

tγ(t + l)γE(ξitξit+l)
L(t)L(t + l)

= 4
N2δ2

N∑
i=1

σ2
i

t2γE(ξitξit+l)
L(t)2t2α

(
1 +O

(
M

T

))
�

where |l|<M and M
T

→ 0 as T → ∞. Since ω2
i = ∑∞

l=−∞E(ξitξit+l), we have

M∑
l=−M

E(utut+l)= 4
N2δ2

N∑
i=1

σ2
i

M∑
l=−M

t2γE(ξitξit+l)

L(t)2(1 +O(M
T
))

∼ 4
N2δ2

N∑
i=1

σ2
i

t2γω2
ii

L(t)2
(1 + o(1))

= 4
δ2

t2γ

NL(t)2
ω2
ξ(1 + o(1))�

The sample quantity is

1
T − [Tr]

∑
[Tr]≤t�t+l≤T

utut+l

= 4
N2δ2

N∑
i=1

σ2
i

1
T − [Tr]

∑
[Tr]≤t�t+l≤T

t2γξitξit+l
L(t)2

(1 + o(1))

= 4
N2δ2

N∑
i=1

σ2
i

{
1

T − [Tr]
∑

[Tr]≤t�t+l≤T

t2γE(ξitξit+l)
L(t)2

(1 + o(1))

+ 1
T − [Tr]

∑
[Tr]≤t�t+l≤T

t2γ(ξitξit+l −Eξitξit+l)
L(t)2

(1 + o(1))
}

= 4
N2δ2

N∑
i=1

σ2
i E(ξitξit+l)

(
1

T − [Tr]
T∑
Tr

1
L(t)2t2α

)
{1 + op(1)}

= 4
N2δ2

N∑
i=1

σ2
i E(ξitξit+l)

1
T − [Tr]

T 2γ

L(T)2

T∑
Tr

( t
T
)2γ

(L(t)2)/(L(T)2)

× {1 + op(1)}
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= 4
N2δ2

T 2γ

L(T)2

∫ 1
r
s2γ ds

1 − r
N∑
i=1

σ2
i E(ξitξit+l){1 + op(1)}

= 4
N2δ2

T 2γ

L(T)2

1 − r1+2γ

(1 + 2γ)(1 − r)
N∑
i=1

σ2
i E(ξitξit+l){1 + op(1)}�

which gives

M∑
l=−M

1
T − [Tr]

∑
[Tr]≤t�t+l≤T

utut+l

= 4
N2δ2

T 2γ

L(T)2

1 − r1+2γ

(1 + 2γ)(1 − r)
N∑
i=1

σ2
i

M∑
l=−M

E(ξitξit+l){1 + op(1)}

= 4
N2δ2

T 2γ

L(T)2

1 − r1+2γ

(1 + 2γ)(1 − r)
N∑
i=1

σ2
i ω

2
ii{1 + op(1)}

= 4
Nδ2

T 2γ

L(T)2

1 − r1+2γ

(1 + 2γ)(1 − r)ω
2
ξ(1 + op(1))�

Similarly, we find that

l̂varr(
√
Nût)=

M∑
l=−M

N

T − [Tr] + 1

∑
[Tr]≤t�t+l≤T

ût ût+l

= 4
δ2

T 2γ

L(T)2

1 − r1+2γ

(1 + 2γ)(1 − r)ω
2
ξ(1 + op(1))�

and then

s2
b̂
= l̂varr(ût)

[
T∑

t=[Tr]
τ2
t

]−1

= 1
NT

l̂varr(
√
Nût)

[
1
T

T∑
t=[Tr]

τ2
t

]−1

= 4
NTδ2

T 2γ

L(T)2

1 − r1+2γ

(1 + 2γ)(1 − r)ω
2
ξ

{
(1 − r)−

(
r

1 − r
)

log2 r

}−1

× (1 + op(1))�
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It follows that

tb̂ = b̂

sb̂
= (b̂− b)

sb̂
+ b

sb̂
= b

sb̂
+Op(1)

and so, under the alternative with b= 2α< 0, we have

b

sb̂
=

(
2α

{
(1 − r)−

(
r

1 − r
)

log2 r

}1/2)
/{

4
N2Tδ2

T 2γ

L(T)2

1 − r1+2γ

(1 + 2γ)(1 − r)ω
2
ξ

}1/2

→ −∞�

confirming consistency of the test in this case. The divergence rate isO(L(T)×
T 1/2−γN).

(c) Finally, consider the case where γ = −α is such that Tγ/(
√
NL(T))→

∞. Again, (73) holds so that

log
H1

Ht

− 2 logL(t)= a+ b log t + ut(118)

and the second term of (116) dominates, but now, for t ≥ [Tr], we have

ut = −εt = log
{

1 + L(t)−2t2γψ2
t

δ2
+ 2L(t)−1tγψt

δ

}
+Op(N−1/2)

= log
{

t2γ

L(t)2N

(
√
Nψt)

2

δ2

}
+Op

(√
NL(T)

T γ
+ 1√

N

)
= −2 logL(t)+ 2γ log t − logN − logδ2 + log(

√
Nψt)

2 + op(1)
= −2 logL(t)+ 2γ log t − logN − logδ2 + log{ξψt + op(N−1/2)}2

+ op(1)
= −2 logL(t)+ 2γ log t +AN + ξwt + op(1)�

where ξwt = logξ2
ψt−E{logξ2

ψt} andAN = E{ξwt}− logN− logδ2. Hence, (118)
is equivalent to

log
H1

Ht

− 2 logL(t)= aN +wt� wt = −2 logL(t)+ ξwt + op(1)�(119)

where aN = a+AN and the term in log t drops out because 2γ = −2α = −b�
The error (wt) in equation (119) therefore diverges to −∞ as T → ∞ and
aN�AN = O(− logN)→ −∞ as N → ∞� This behavior is consistent with the
fact (easily deduced from (61)) that Ht =Op(N) in this case.
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In view of (119), the fitted regression (98) behaves like a regression of
−2 logL(t) on log t, so that just as in case (a) and (109) above, we have

b̂=
∑T

t=[Tr] τt{−2 logL(t)+ ξwt + op(1)}∑T

t=[Tr] τ2
t

= − 2
logT

+O
(

1

log2 T

)
�

So b̂→p 0� as in case (a).
Next consider the standard error. When L(t)= log t,

logL(t)− logL(t)= log t
T

− log t
T

logT
+O

(
1

log2 T

)
from (101), so that

ût = −(ξwt − ξ̄w)− 2{logL(t)− logL(t)} − b̂
{

log
t

T
− log

t

T

}

= −(ξwt − ξ̄w)− 2
log t

T
− log t

T

logT
+ 2

logT

{
log

t

T
− log

t

T

}
+O

(
1

log2 T

)
= −(ξwt − ξ̄w)+O

(
1

log2 T

)
�

Assuming the long run variance of ξwt exists and writing ω2
ξω

= ∑∞
k=−∞E(ξwt ×

ξwt+k), we have

l̂varr(ût)=
M∑

l=−M

1
T − [Tr] + 1

∑
[Tr]≤t�t+l≤T

ût ût+l =ω2
ξω

{1 + op(1)}

and then

s2
b̂
= l̂varr(ût)

[
T∑

t=[Tr]
τ2
t

]−1

= ω2
ξω

T

[
1
T

T∑
t=[Tr]

τ2
t

]−1

{1 + op(1)}

= ω2
ξω

T

{
(1 − r)−

(
r

1 − r
)

log2 r

}−1

�
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Hence

tb̂ = b̂

sb̂

=
{
− 2

logT
+O

(
1

log2 T

)}

÷
{
ω2
ξω

T

{
(1 − r)−

(
r

1 − r
)

log2 r

}−1}1/2

= − 2
√
T

logT

{
(1 − r)− ( r

1−r ) log2 r
}1/2

ωξω

{1 + o(1)} → −∞

and again the test is consistent. The divergence rate is O(T 1/2/ logT).

B.6. Proof of Theorem 3

(a) Under the local alternative (41), we have

δi ∼ iid(δ� c2T−2ω) for α≥ω> 0�(120)

Under this alternative the DGP for log(H1/Ht) has the same form as in case
(a) in the proof of Theorem 2, but with δ̄= δ and

σ2 =N−1
∑
(δi − δ)2 = c2T−2ω{1 +Op(N−1/2)} =Op

(
1
T 2ω

)
�(121)

σδψt =N−1
N∑
i=1

(δi − δ)(ψit −ψt)=N−1/2T−ωςTNt{1 + op(1)}(122)

=Op(N−1/2T−ω)

as N�T → ∞� Thus, as in (94), we have

Ht = 1
δ2

σ2 + σ2
ψt
L(t)−2t−2α + 2(σδψt )L(t)−1t−α

1 +L(t)−2t−2αψ2
t /δ

2 + 2L(t)−1t−αψt/δ
(123)

= 1
δ2

σ2 + σ2
ψt
L(t)−2t−2α + 2(σδψt )L(t)−1t−α

1 +L(t)−2t−2αψ2
t /δ

2 + 2L(t)−1t−αψt/δ

= Op(T
−2ω)�

since ω ≤ α. It follows that Ht →p 0 as T → ∞ for t ≥ [Tr] and r > 0, as the
model leads to behavior in Ht local to that under the null hypothesis. More
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explicitly, we have, using (97), (96), and (123),

log
H1

Ht

− 2 logL(t)= logH1 − 2 log
σ

δ
− 2 logL(t)− εt(124)

= logH1 − 2 log
c

δ
+ 2ω logT − 2 logL(t)− εt�

where

εt = log
{

1 +
(
σ2
ψt

σ2

)
L(t)−2t−2α + 2

(
σδψt
σ2

)
L(t)−1t−α

}
(125)

− log
{

1 + L(t)−2t−2αψ2
t

δ̄2
+ 2L(t)−1t−αψt

δ̄

}
= log

{
1 +

(
σ2
ψt

c2

)
T 2ωL(t)−2t−2α + 2

(
σδψt
c2

)
T 2ωL(t)−1t−α

}
− log

{
1 + L(t)−2t−2αψ2

t

δ2
+ 2L(t)−1t−αψt

δ

}
=

(
σ2
ψt

c2

)
T 2ωL(t)−2t−2α +Op

(
1

L(T)4T 4(α−ω) + 1√
NL(T)T 2(α−ω)

)
�

The fitted regression is again

log
H1

Ht

− 2 logL(t)= â† + b̂ log
(
t

T

)
+ residual�(126)

where now â† = logH1 − 2 log c
δ
+ 2ω logT and, as in (103),

b̂= −
∑T

t=[Tr] τt{2 logL(t)+ εt}∑T

t=[Tr] τ2
t

= −
∑T

t=[Tr] τtεt∑T

t=[Tr] τ2
t

− 2
logT

+ g(r)

log2 T
+Op

(
1

log3 T

)
�

Next,

1
T

T∑
t=[Tr]

τtεt =
v2
ψN

c2

1
L(T)2T 1+2(α−ω)

T∑
t=[Tr]

τt
L(T)2

L(t)2

(
t

T

)−2α

{1 + op(1)}(127)

= v2
ψN

c2

1
L(T)2T 2(α−ω)
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×
∫ 1

r

{
log s− 1

1 − r
∫ 1

r

logpdp
}
s−2α ds {1 + op(1)}

= v2
ψN

c2

r∗(α)
L(T)2T 2(α−ω) {1 + op(1)}�

where r∗(α)= ∫ 1
r
{log s− 1

1−r
∫ 1
r

logpdp}s−2α ds is given in (106) above. We de-
duce that

b̂= − 2
logT

+ g(r)

log2 T
− v2

ψN

c2

r(α)

L(T)2T 2(α−ω) +Op
(

1

log3 T

)
�(128)

where r(α) is given in (108), so that b̂→p 0 as T�N → ∞. The result is there-
fore comparable to that under case (a) of Theorem 2.

Next consider the standard error of b̂ under the local alternative. Writing the
residual in (126) as ût , the long run variance estimate has typical form

l̂varr(
√
Nût)=

M∑
l=−M

N

T − [Tr] + 1

∑
[Tr]≤t�t+l≤T

ût ût+l�

In view of (125), (127), and (128), we have

ût = −(εt − ε̄)− 2{logL(t)− logL(t)} − b̂
{

log
t

T
− log

t

T

}

= −(εt − ε̄)− 2
log t

T
− log t

T

logT
− b̂

{
log

t

T
− log

t

T

}
+Op

(
1

log2 T

)

= − v2
ψN

c2T−2ω

{
1

L(t)2t2α
− 1
L(T)2T 2α

1 − r1−2α

(1 − r)(1 − 2α)

}
+

{
v2
ψN

c2

r(α)

L(T)2T 2(α−ω) − g(r)

log2 T

}{
log

t

T
− log

t

T

}
+Op

(
1

log2 T

)
�

using (112). Then, for |l| ≤M , M
T

→ 0, and t ≥ [Tr] with r > 0, we have, as in
case (a) of the proof of Theorem 2,

ût+l = −(εt+l − ε̄)− b̂
{

log
t + l
T

− log
t

T

}
− 2{logL(t)− logL(t)}

= − v2
ψN

c2T−2ω

{
1

L(t)2t2α
[1 + o(1)] − 1

L(T)2T 2α

1 − r1−2α

(1 − r)(1 − 2α)

}
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+
{
v2
ψN

c2

r(α)

L(T)2T 2α
− g(r)

log2 T

}{
log

t

T
[1 + o(1)] − log

t

T

}
+Op

(
1√

NL(T)Tα

)
+Op

(
1

log2 T

)
= ût{1 + o(1)}�

so that, just as in (113), we find

1
T − [Tr]

∑
[Tr]≤t�t+l≤T

ût ût+l

= 1
T − [Tr]

∑
[Tr]≤t≤T

û2
t {1 + o(1)}

= 1
T − [Tr]

v4
ψN

c4T−4ω

∑
[Tr]≤t≤T

{
1

L(t)2t2α
− 1
L(T)2T 2α

1 − r1−2α

(1 − r)(1 − 2α)

}2

+ 1
T − [Tr]

{
v2
ψN

c2

r(α)

L(T)2T 2(α−ω) − g(r)

log2 T

}2

×
∑

[Tr]≤t≤T

{
log

t

T
− log

t

T

}2

− 2
T − [Tr]

v2
ψN

c2T−2ω

{
v2
ψN

c2

r(α)

L(T)2T 2(α−ω) − g(r)

log2 T

}

×
∑

[Tr]≤t≤T

log t
T

− log t
T

L(t)2t2α
+Op

(
1

log4 T

)

=Op
(

1

log4 T

)
�

uniformly in l, and when L(T) = logT and α ≥ ω > 0. The remainder of the
proof follows that of case (a) in the proof of Theorem 2. In particular, we have

l̂varr(
√
Nût)=Op

(
NM

log4 T

)
�

s2
b̂
= l̂varr(ût)

[
T∑

t=[Tr]
τ2
t

]−1

=Op
(

M

(log4 T)T

)
�
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and

tb̂ = b̂

sb̂
= − 2

logT
÷Op

(
M1/2

(log2 T)T 1/2

)

= − 2
logT

×Op
(
(log2 T)T 1/2

M1/2

)
→ −∞

for all α≥ω> 0 and all bandwidth choices M ≤ T . Again, the divergence rate
is Op((logT)T 1/2/M1/2). Thus, the test is consistent against all local alterna-
tives of the form (120) with ω≤ α.

(b) When ω>α� the alternative involves

δi ∼ iid(δ� c2T−2ω) for ω>α≥ 0�(129)

so that δi = δ+Op(T−ω)= δ+ op(T−α) and the alternatives are closer to the
null than in case (a). Now we have

σ2 =N−1
N∑
i=1

(δi − δ)2 = c2T−2ω{1 +Op(N−1/2)} = op
(

1
T 2α

)
�

σδψt =N−1
N∑
i=1

(δi − δ)(ψit −ψt)=N−1/2T−ωςTNt{1 + op(1)}

= op(N−1/2T−α)�

and (123) becomes

Ht = 1
δ2

σ2 + σ2
ψt
L(t)−2t−2α + 2(σδψt )L(t)−1t−α

1 +L(t)−2t−2αψ2
t /δ

2 + 2L(t)−1t−αψt/δ

= 1
δ2

σ2
ψt
L(t)−2t−2α + 2(σδψt )L(t)−1t−α + c2T−2ω{1 +Op(N−1/2)}

1 +L(t)−2t−2αψ2
t /δ

2 + 2L(t)−1t−αψt/δ

= 1
L(t)2t2α

1
δ2

× σ2
ψt

+ c2T−2ωt2αL(t)2{1 +Op(N−1/2)} + 2(σδψt )L(t)tα

1 +L(t)−2t−2αψ2
t /δ

2 + 2L(t)−1t−αψt/δ
�

so that the behavior of Ht is asymptotically the same as under the null (cf.
(66)). Taking logarithms, we have

logHt = −2 logL(t)− 2α log t
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+ log
{

1
δ2

[
v2
ψN +N−1/2ηNt +Op(N−1)

+ c2T−2ωt2αL(t)2{1 +Op(N−1/2)} +Op
(

L(T)

N1/2T (ω−α)

)]}
− log

{
1 + L(t)−2t−2αψ2

t

δ2
+ 2L(t)−1t−αψt

δ

}
= −2 logL(t)− 2α log t + 2 log

vψN

δ
+ εt�

where

εt = log
[

1 +N−1/2ηNt

v2
ψN

+ c2

v2
ψN

T−2ωt2αL(t)2{1 +Op(N−1/2)}

+Op
(

L(T)

N1/2T (ω−α)

)]
− log

{
1 + L(t)−2t−2αψ2

t

δ2
+ 2L(t)−1t−αψt

δ

}
+Op(N−1)�

These formulae lead to the empirical regression equation

log
H1

Ht

− 2 logL(t)= a+ b log t + ut�

where a= h1 − 2 log(vψN/δ), b= 2α, and ut = −εt , just as in (73) and (74), but
now

ut = − 1√
N

ηNt

v2
ψN

− c2

v2
ψN

T−2ωt2αL(t)2{1 +Op(N−1/2)}(130)

+ 2
δ

1
tαL(t)

ψt +Op
(

1
L(T)2T 2αN

+ L(T)

N1/2T (ω−α) + 1
N

)
= − c2

v2
ψN

t2α

T 2ω
L(t)2{1 +Op(N−1/2)} − 1√

N

ηNt

v2
ψN

+Op
(

1
N1/2L(T)Tα

+ L(T)

N1/2T (ω−α)

)
�

The first term of (130) dominates the behavior of the regression error ut when
ω>α≥ 0 and T 2(ω−α)/(

√
NL(T)2)→ 0 as T�N → ∞. It follows that

b̂− b=
∑T

t=[Tr] τtut∑T

t=[Tr] τ2
t
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= − c2

v2
ψN

1
T 2ω

1√
NT

∑T

t=[Tr] τtt
2αL(t)2

T−1
∑T

t=[Tr] τ2
t

− 1
v2
ψN

1√
NT

∑T

t=[Tr] τtηNt

T−1
∑T

t=[Tr] τ2
t

+ 2
δ

1
T

∑T

t=[Tr] τtψt/(t
αL(t))

T−1
∑T

t=[Tr] τ2
t

+Op
(

1
L(t)2T 2αN

)
�

and since

1
T

T∑
t=[Tr]

τtt
2αL(t)2

= L(T)2

T 1−2α

T∑
t=[Tr]

τt

(
t

T

)2a

{1 + o(1)}

= T 2αL(T)2

∫ 1

r

{
log s− 1

1 − r
∫ 1

r

logpdp
}
s2α ds {1 + o(1)}�

we have

b̂− b= − c2

v2
ψN

h(r)
L(T)2

T 2(ω−α) {1 + o(1)}�(131)

where

h(r)=
∫ 1
r

{
log s− 1

1−r
∫ 1
r

logpdp
}
s2α ds

(1 − r)− ( r
1−r ) log2 r

�

Since ω>α, b̂→p b and b̂ is consistent.
Next, the regression residual has the form

ût = −(εt − ε̄)− (b̂− b)
{

log
t

T
− log

t

T

}
= − c2

v2
ψN

L(T)2

{
t2α

T 2ω
− 1
T 2(ω−α)

1 − r1+2α

2α+ 1

}
{1 +Op(N−1/2)}

+
{
c2

v2
ψN

h(r)L(T)2

T 2(ω−α)

}{
log

t

T
− log

t

T

}
�

since

1
T

T∑
t=[Tr]

t2α = 1
T 1−2α

T∑
t=[Tr]

(
t

T

)2a

= T 2α

∫ 1

r

s2α ds {1 + o(1)}
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= T 2α 1 − r1+2α

2α+ 1
�

As earlier, we find ût+l = ût{1 + o(1)} for |l| ≤M , and then

1
T − [Tr]

∑
[Tr]≤t�t+l≤T

ût ût+l

= 1
T − [Tr]

∑
[Tr]≤t≤T

û2
t {1 + o(1)}

= 1
T − [Tr]

c4

v4
ψN

L(T)4
∑

[Tr]≤t≤T

{
t2α

T 2ω
− 1
T 2(ω−α)

1 − r1+2α

2α+ 1

}2

× {1 +Op(N−1/2)}

+ L(T)4

T − [Tr]
{
c2

v2
ψN

h(r)

T 2(ω−α)

}2 ∑
[Tr]≤t≤T

{
log

t

T
− log

t

T

}2

− 2
T − [Tr]

c2

v2
ψN

c2

v2
ψN

h(r)L(T)4

T 4(ω−α)
∑

[Tr]≤t≤T

{
log

t

T
− log

t

T

}(
t

T

)2α

× {1 +Op(N−1/2)}

=Op
(
L(T)4

T 4(ω−α)

)
uniformly in |l| ≤M . Hence,

l̂varr(ût)=
M∑

l=−M

1
T − [Tr] + 1

∑
[Tr]≤t�t+l≤T

û2
t {1 + o(1)}

= Op

(
ML(T)4

T 4(ω−α)

)
and so

s2
b̂
= l̂varr(ût)

[
T∑

t=[Tr]
τ2
t

]−1

=Op
(
ML(T)4

T 4(ω−α)T

)[
1
T

T∑
t=[Tr]

τ2
t

]−1

= Op

(
ML(T)4

T 1+4(ω−α)

)
�
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It follows that

tb̂ = b̂

sb̂
=

[
b− c2

v2
ψN

h(r)
L(T)2

T 2(ω−α) {1 + o(1)}
]

×Op
(
T 1/2+2(ω−α)

M1/2L(T)2

)
→

{∞� for b= 2α> 0,
−∞� for b= 2α= 0.

Thus, when α > 0, the test has no power to detect alternatives of the form
(129), whereas when ω> α= 0, the test is consistent. In both cases, the alter-
natives δi �= δ are close to the null because ω > α, but when α = 0, the rate
of convergence of δit is slow (at a slowly varying rate) and the test is therefore
able to detect the local departures from the null.

B.7. Power and the Choice of the L(t) Function

This section provides a short discussion on the choice of the L(t) function.
Since the class of possible L(t) functions is vast, it is convenient to consider
the restricted class of logarithmic and higher order logarithmic functions

L(t)= logk t for integer k≥ 1�(132)

where log1 t = log t� log2 t = log(log t), and so on. Since our concern is with sit-
uations where t is large in the regression asymptotics, L(t) and L(t)−1 are both
well defined. Note that k can be any positive integer, but we confine attention
below to the primary cases of interest where k= 1�2. Higher order cases can
be deduced by recursion.

From (132), we can rewrite (100) and (102) as

logL(t)= logL
(
T
t

T

)
= logk

{
logT + log

t

T

}
= logk

[
logT

{
1 + log t

T

logT

}]

=


log2 T + log t

T

logT
− 1

2
log2 t

T

log2 T
+O

(
log3 t

T

log3 T

)
� k= 1,

log
[

log2 T + log t
T

logT
− 1

2
log2 t

T

log2 T
+O

(
log3 t

T

log3 T

)]
� k= 2,

=


log2 T + log t

T

logT
− 1

2
log2 t

T

log2 T
+O

(
log3 t

T

log3 T

)
� k= 1,

log3 T + log t
T

logT log2 T
+O

(
log2 t

T

log2 T log2 T

)
� k= 2,
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extending (101). Correspondingly, under the alternative α ≥ 0 and δi ∼
iid(δ�σ2

δ) considered in case (a) of Theorem 2, the choice of L(t) affects the
bias formula in (109). Since

∑T

t=[Tr] τt logL(t)∑T

t=[Tr] τ2
t

=


1

logT
+O

(
1

log2 T

)
� k= 1,

1
logT log2 T

+O
(

1

log2 T log2 T

)
� k= 2,

we find that

b̂=


− 2

logT
+Op

(
1

log2 T

)
� k= 1,

− 2
logT log2 T

+O
(

1

log2 T log2 T

)
� k= 2.

Proceeding as in the proof of Theorem 2 (case (a)) we find that

s2
b̂
=


Op

(
M

(log4 T)T

)
� k= 1,

Op

(
M

(log4
2 T)T

)
� k= 2,

and then

tb̂ = b̂

sb̂
=


− 2

logT
×Op

(
(log2 T)T 1/2

M1/2

)
� k= 1,

− 2
logT

×Op
(
(log2

2 T)T
1/2

M1/2

)
� k= 2.

So, the divergence rate and discriminatory power of the log t test reduce as we
change L(t) from log t to log2 t = log log t. The test is still consistent for k= 2,
provided

M logT

T log2
2 T

→ 0�

APPENDIX C: ASYMPTOTIC PROPERTIES OF THE CLUSTERING PROCEDURE

Section 4 develops a clustering procedure based on augmenting a core panel
with K individuals where δi = δA for i = 1� � � � �K with additional individuals
one at a time for which δK+1 = δB, say. This appendix provides an asymptotic
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analysis of that procedure. We assume that the size of the core group K→ ∞
as N → ∞. The variation of the δi is then

σ2 = 1
K + 1

K+1∑
i=1

(δi − δ̄)2 = K

(K + 1)2
(δA − δB)2 =O(K−1)�(133)

where

δ̄= 1
K + 1

K+1∑
i=1

δi = KδA

K + 1
+ δB

K + 1
= δA +O(K−1)

as in (42) and σ2 depends on K. More generally, we can consider a panel with
idiosyncratic coefficients

δi ∼ iid(δ� c2K−1)� where
K

T 2α
→ 0 and α> 0�(134)

so that K is small relative to T� In this case, σ2 = c2K−1� analogous to (133).
In the same way as in (124) and (125), under this alternative the DGP for
log(H1/Ht) has the form

log
H1

Ht

− 2 logL(t)= logH1 − 2 log
c

δ
+ logK − 2 logL(t)− εt�

where

εt =
(
σ2
ψt

c2

)
KL(t)−2t−2α +Op

(
K2

L(T)4T 4α
+ K√

NL(T)T 2α

)
�

The fitted regression can now be written as

log
H1

Ht

− 2 logL(t)= â† + b̂ log
(
t

T

)
+ ût�

where â† = logH1 − 2 log c
δ

+ logK and, as in (128) but with K/T 2α → 0, we
find that

b̂= − 2
logT

+ g(r)

log2 T
− v2

ψN

c2

r(α)K

L(T)2T 2α
+Op

(
1

log3 T

)
�

Proceeding as in the proof of Theorem 3, we find that

s2
b̂
= l̂varr(ût)

[
T∑

t=[Tr]
τ2
t

]−1

=Op
(

M

(log4 T)T

)
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and

tb̂ = b̂

sb̂
= − 2

logT
÷Op

(
M1/2

(log2 T)T 1/2

)

= − 2
logT

×Op
(
(log2 T)T 1/2

M1/2

)
→ −∞

for all α > 0� for K satisfying K/T 2α → 0� and all bandwidth choices M ≤ T�
The test is therefore consistent against local alternatives of the form (134).
In view of (133), this includes the case where δi = δA for i = 1� � � � �K with
δK+1 = δB �= δA. On the other hand, when δi = δA for i = 1� � � � �K, the null
hypothesis holds for N =K and tb̂ = (b̂− b)/sb̂ ⇒N(0�1) as in Theorem 1.

When T 2α/K → 0, the alternatives (134) are very close to the null, relative
to the convergence rate except when α = 0. This case may be treated as in
the proof of case (b) of Theorem 3. Accordingly, the test is inconsistent and
unable to detect the departure from the null when α> 0. However, when α= 0
and the convergence rate is slowly varying under the null, the test is consistent
against local alternatives of the form (134) just as in case (b) of Theorem 3.
In effect, although the alternatives are very close (because K is large), the
convergence rate is so slow (slower than any power rate) and this suffices to
ensure the test is consistent as T → ∞.

APPENDIX D: DATA FOR THE COST OF LIVING INDEX EXAMPLE

Data Source: Bureau of Labor Statistics
Data: 19 U.S. Cities CPI
Time Period: 1918–2001 (84 annual observations)
List of Cities: New York (NYC), Philadelphia (PHI), Boston (BOS), Cleve-

land (CLE), Chicago (CHI), Detroit (DET), Washington, DC (WDC). Bal-
timore (BAL), Houston (HOU), Los Angeles (LAX), San Francisco (SFO),
Seattle (SEA), Portland (POR), Cincinnati (CIN), Atlanta (ATL), St. Louis
(STL), Minneapolis/St. Paul (MIN), Milwaukee (KCM)
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