2. THE ECONOMIC GROWTH THEORY AND INCOME CONVERGENCE

NEOCLASSICAL MODEL OF ECONOMIC GROWTH

- Production function: $Y(t) = K(t)^a (L(t)A(t))^{1-a} = K(t)^a L(t)^{1-a}$ $\partial K(t)/\partial t = sY(t) - \delta K(t), L(t) = L(0)e^{vt}, A(t) = A(0)e^{\xi t}$
- Income per «effective worker» : $\hat{y}(t) = Y(t)/L(t)A(t) = k(t)^a$ income per capita: $y(t) = Y(t)/L(t) = \hat{y}(t)A(0)e^{\xi t}$
- Equilibrium growth: $k(t) = k^* \implies s \cdot \hat{y}^* = (\xi + v + \delta)k^*, \hat{y}^* = f(k^*),$ hence $\ln \hat{y}(t) \ln \hat{y}^* = (\ln \hat{y}(0) \ln \hat{y}^*)e^{-\lambda t}, \lambda > 0: \hat{y}(t) \rightarrow \hat{y}^* \text{ with } t \rightarrow \infty$
- In terms of per capita income:

$$lny(t) = ln\hat{y}^* + lnA(0) + \xi t$$
 + $(lny(0) - lnA(0) - ln\hat{y}^*)e^{-\lambda t}$ equilibrium growth path deviation from the equilibrium growth path

• β-convergence:

$$lny(t) = \frac{(\ln A(0) + \ln \hat{y}^*)(1 - e^{-\lambda t}) + \xi t}{\ln y(0)} + \frac{e^{-\lambda t}}{\ln y(0)} + \frac{e^{-\lambda t}}{\ln y(0)} + \frac{e^{-\lambda t}}{\ln y(0)}, \quad \beta_+ < 1$$
or $\ln(y(t)/y(0)) = \alpha$ + $\beta \ln y(0)$, $\beta = \beta_+ - 1 < 0$

Notation:

Y – total output; s – saving rate;

K – physical capital; δ – depreciation rate of physical capital;

L – number of workers; k – capital per «effective worker»;

A – state of technology; λ – rate of convergence to the equilibrium.

TWO TYPES OF CONVERGENCE

in set $\{i\}$ of economies

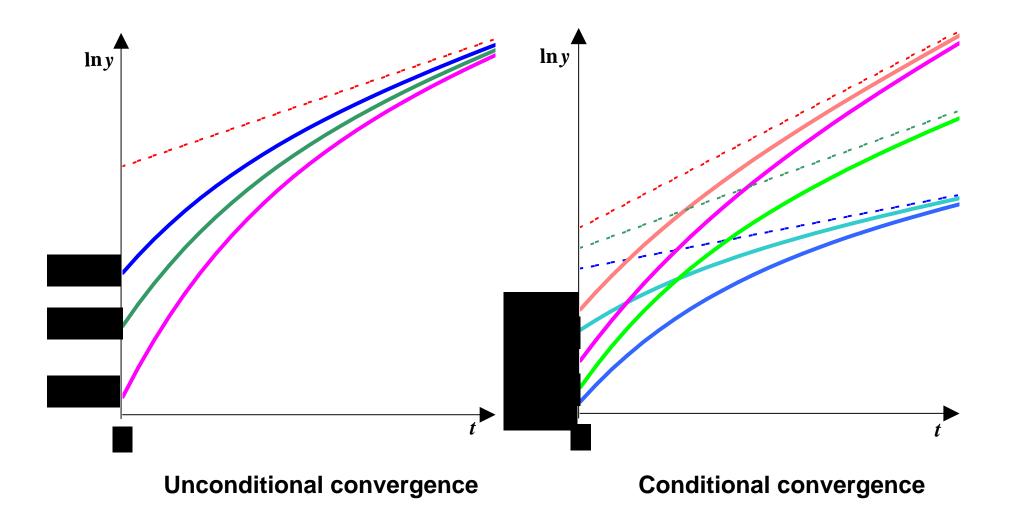
Unconditional convergence

economies are homogeneous: $f_i(\cdot)$, ξ_i , v_i , δ_i , s_i , $A_i(0)$ are the same for all i, then $\hat{y}_i^* = g((\xi_i + v_i + \delta_i)/s_i)$ and economic growth path are the same;

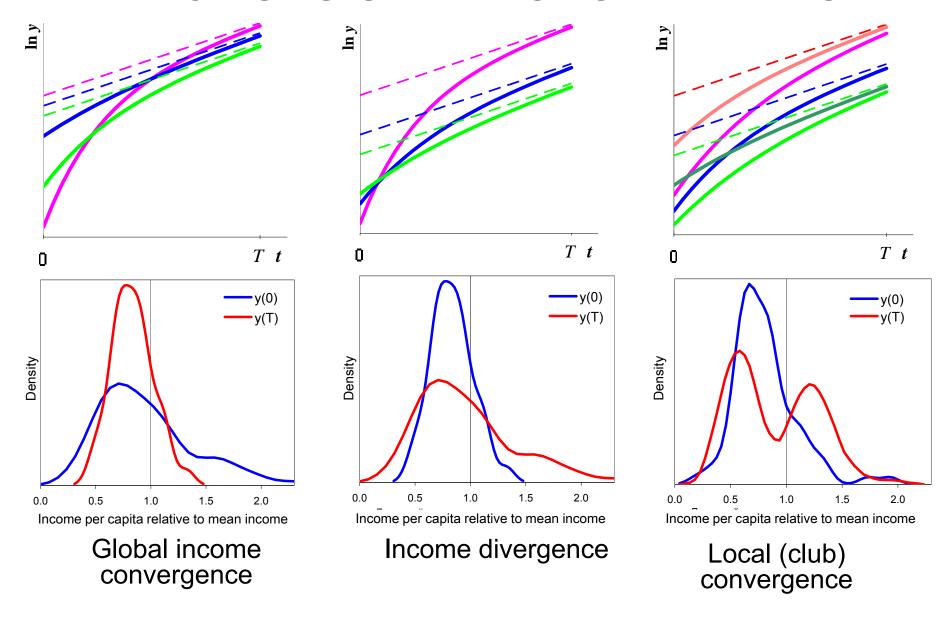
 $ln(y_i(t)/y_i(0)) = \alpha + \beta ln y_i(0)$

Conditional convergence

economies are heterogeneous, $\alpha = \alpha(f_i(\cdot), \xi_i, v_i, \delta_i, s_i, A_i(0));$ $\ln(y_i(t)/y_i(0)) = \alpha_0 + \alpha(x_{i1}, \dots, x_{im}) + \beta \ln y_i(0)$ or $\ln(y^\circ_i(t)/y_i(0)) = \alpha_0 + \beta \ln y_i(0),$ or $\ln(y^\circ_i(t)/y_i(0)) = \ln(y_i(t)/\ln y_i(0)) - \alpha(x_{i1}, \dots, x_{im})$



PREDICTIONS OF THE GROWTH THEORY



ALTERNATIVE GROWTH MODELS

- **Two saving rates**: the saving rate out of wage income is s_1 , the saving rate out of interest income is s_2 . Then the economy may have two stable equilibriums \dot{y}^* . In a set of homogeneous economies those with low $y_i(0)$ converge to one equilibrium growth path, and those with high $y_i(0)$ converge to other equilibrium growth path (which implies a "poverty trap").
- The Romer model: increasing marginal productivity. Economies need not converge; growth may be persistently slower in less developed countries or even may fail to take place at all.
- The Azariadis-Drazen model: threshold effects. Multiple equilibriums \hat{y}^* in an economy; the evolution differs from conditional convergence.
- · And so on.