
INSTRUCTIONS TO THE PROGRAMS FOR NONLINEARLY TESTING FOR
A UNIT ROOT IN THE PRESENCE OF A BREAK IN THE MEAN

Developed by Konstantin Gluschenko

glu@nsu.ru
http://econom.nsu.ru/users/gluschenko

Version: 08.2005

0. Introduction
The programs deal with testing for a unit root, taking account of a (possible) structural break in the
mean of a tested time series. The programs are those for EViews 4.1 and later versions. They are
provided in ASCII format and are ready for use with EViews; you need only to copy programs to
your computer. Two programs use the file CriticalValues.xls which is also provided. You need copy
this file as well and place it to the default (for your EViews) directory. You may modify this file or
create such a file by yourself. To do so, you should know its structure which is described in Section
3 of this document.

The programs are licensed to be available to users to download, copy, use, and modify (except for a
commercial use). I hope that in doing so you will acknowledge me as the original creator.

There are two main programs; their functions are as follows.

AR(1) with break.prg estimates nonlinear and Perror-type model allowing for break and perform
the respective unit root tests as well as the Dickey-Fuller and Phillips-Perron tests. The program
uses file CriticalValues.xls.

CDFs of UR statistics with break.prg estimates cumulative distribution functions (CDF), that is,
critical values, of the nonlinear and Perron test statistics under the null hypothesis. These results are
used to fill file CriticalValues.xls.

Besides, there are two additional programs for exploring properties of the nonlinear test.

Experimenting with parameters.prg also estimates CDFs of the above statistics, but in contrast to
CDFs of UR statistics with break it allows specifying a wide range of parameters of generated time
series. And so, this program can estimate CDFs both for the unit root case and for various
alternatives.

Power.prg estimates power of the unit root tests allowing for break and that of the Dickey-Fuller
test under various alternatives. This program uses file CriticalValues.xls.

Instructions for these two programs are provided in Appendix.

1. Models and statistics dealt with
The starting point is an AR(1) process with a break which changes the mean of the process from µ0
to µ1 at t = θ + 1:

(0) yt = µ0 + (µ1 – µ0)Bθt + νt (t = 0, 1,…, T), νt = (λ+1)νt-1 + εt (t = 1,…, T), ν0 = ξ,

where εt ~ iid N(0, σ2), ξ is either a constant or a random variable, and Bθt is a step dummy such that
Bθt = 0 if t ≤ θ and Bθt = 0 if t > θ. The first difference ∆Bθt ≡ Bθt – Bθ,t-1 can be interpreted as a pulse
dummy that takes the value of 1 if t = θ + 1 and 0 otherwise. An alternative way of characterizing
the break, which is referred to as “reversed break,” is dummy tBθ′ such that tBθ′ = 1 if t ≤ θ and

 2

tBθ′ = 0 if t > θ; note that tBθ′ = 1 – Bθt. (Then the mean of the process changes from µ1 to µ0 at
t = θ + 1.) The pre-break period θ is referred to as “break point”; 0 < θ < T – 1. It can be also
represented as the fraction of the sample size: Θ = θ/T; 0 < Θ < 1. To distinguish between them, θ is
referred to as “absolute break point,” while Θ is referred to as “relative break point.” The actual
point in time when the break occurs, θ + 1, is referred to as “break date.”

Let α ≡ –λµ0 and γ ≡ µ1 – µ0 (the “break height”); from now on, t = 1,…,T. Rearranging (0),
nonlinear – with respect to coefficients – models are arrived at:

(1a) ∆yt = λyt-1 + γBθt – γ(λ+1)Bθ,t-1 + εt;

(1b) ∆yt = α + λyt-1 + γBθt – γ(λ+1)Bθ,t-1 + εt.

The first model correspond to the case of µ0 = 0, the second one is for µ0 ≠ 0.

Using the above notations, the respective specifications of the AR(1) model allowing for break in
the spirit of Perron (1990) – the Perron-type models – look like

(2a) ∆yt = λyt-1 + γBθt – δBθ,t-1 + εt;

(2b) ∆yt = α + λyt-1 + γBθt – δBθ,t-1 + εt.

Equations (2a) and (2b) are derived with γ ≡ ψ + δ from forms similar to a specification used by
Perron (1990):

(3a) ∆yt = λyt-1 + ψBθt + δ∆Bθt + εt;

(3b) ∆yt = α + λyt-1 + ψBθt + δ∆Bθt + εt.

The program AR(1) with break can estimate the Perron-type models in both forms, so that you can
compare your estimates with those reported by other authors, since they commonly use
specifications similar to (3a) or/and (3b). (See, e.g., Enders, 1995:248.) To distinguish between
these two forms, the program labels (2a) and (2b) as “Perron-type equation,” while (3a) and (3b) are
labeled as “Original Perron equation” (although they are not, in fact, true original ones).

The programs also use the Dickey-Fuller test equations:

(4a) ∆yt = λyt-1 + εt;

(4b) ∆yt = α + λyt-1 + εt.

The interest is to distinguish between hypotheses H0: λ = 0 against H1: λ < 0. (In the literature,
ρ ≡ λ + 1 is frequently used instead; then the hypotheses are H0: ρ = 1, and H1: ρ < 1.) In doing so,
the t-ratio of λ is used as the test statistic, denoting it by τ (with a subscript which indicates
belonging to a particular test) in order to underline that it has a distribution differing from the
standard t distribution. The notation is as follows: τ0NL for (1a), τµNL for (1b), τ0P for (2a)/(3a), τµP
for (2b)/(3b), τ0 for (4a), and τµ for (4b). The parameterized null hypothesis is the same for models
(1a) through (4b); it looks like

(5) ∆yt = λyt-1 + γ∆Bθt + εt.

For the case of reversed break, equations (1a) through (3b) are the same, except for Bθt is replaced
by tBθ′ , and ∆Bθt is replaced by tBθ′∆ . The test statistics for models with no constant are denoted by

NL0τ ′ and P0τ ′ . The models with constant share the same test statistics: NLµτ ′ = τµNL and Pµτ ′ = τµP.

For more details, see Gluschenko (2005).

 3

2. Instructions to the programs
2.0 Executing a Program

To run a program, a standard way is used; see Quantitative Micro Software (2001, 2004). To load a
program previously saved on disk, click on File/Open/Program..., navigate to the appropriate
directory, and click on the desired name. To execute the program, push the Run button on a program
window. The Run Program dialog opens, where you should supply arguments (see subsections
below for arguments needed for a particular program). Choose Quiet mode.

Set the Maximum errors before halting to a number more than 1. Then EViews will
continue to execute the program until this number of errors is reached. For example, before creating
a new EViews workfile, the program CDFs of UR statistics with break (as well as Experimenting
with parameters and Power) checks whether it already exists on disk, trying to load it. When the file
does not exist, EViews interprets this as the error; and so, the program would halt, be the maximum
number of errors 1. (However, if there is a serious error so that it is impractical for EViews to
continue, the program will halt even if the maximum number of errors is not reached.) After all that
push OK button on the Run dialog window. Figure 1 demonstrates an example of starting the
program CDFs of UR statistics with break in EViews 4.1.

Figure 1. Starting the program CDFs of UR statistics with break.

The program CDFs of UR statistics with break (as well as Experimenting with parameter and
Power) creates itself an EViews workfile. However, the program AR(1) with break needs a workfile
with time series to be analyzed. Therefore, you should have such a file opened before starting this
program.

CDFs of UR statistics with break (and Experimenting with parameter and Power, too) can take
much time to execute, several hours or even days, depending on a specified number of replications,
as well as on the power of computer, operating system, and version of EViews. (While executing,
these programs display estimated time left to complete the work in the status line.) Therefore, each
of them saves the Evies workfile with its results every hour. Thus, if some problem occurs with your
computer, you lose, at the worst, a work of one hour. To continue the work, start the program with
the name of the workfile with incomplete work as the (only) argument. You may do the work in
parts yourself. Push F1 or Esc key to halt the program and save the relevant workfile to disc. You
can continue the interrupted work at any time as above.

 4

All the programs check arguments specified, halting the program and reporting the error found in
the status line. However, I cannot guarantee that all possible types of user’s errors are foreseen. An
unforeseen mistake in arguments can cause some (a priory unknown) error while executing the
program. In such a case, if you cannot find a mistake in your arguments, please do not hesitate to
contact me (as well as when you need some other advice).

It may happen that you make mistake in a parameter, while formally it is correct. In order that you
can check correctness of your parameters, the programs show a window, table Description, that
contains interpreted values of parameters. (In the program Power, this table is called Results,
containing both specified parameters and results of execution.) When you find a mistake, you can
halt the program (pushing F1 or Esc), and rerun it with correct arguments. If the program has
already saved its results on disc (i.e., if it has worked more than one hour), delete this file from disc.
(This does not concern the program AR(1) with break which works fast. Nevertheless, it also creates
the table Description so that you can check whether specified arguments are correct.)

2.1 AR(1) with break

Function. This program estimates models (1a) through (4b) – depending on specification – on a
user-specified time series and performs the nonlinear unit root test allowing for break, the Perron
test (if specified), and the Dickey-Fuller and Phillips-Perron tests (if specified). The break date can
be either user-specified or estimated by the program. The program uses a user-provided EViews
workfile with time series to be analyzed as well as the file CriticalValues.xls that contains critical
values of the above tests. (These values are obtained with the use of the program CDFs of UR
statistics with break.) See Section 3 of this document for the description of this file. (It is possible to
use a different file with critical values; it should have a certain structure described in Section 3 of
this document.)

Algorithm. At first, the program finds critical values of the nonlinear and Perron tests for T of the
specified time series or a user-specified sample size, and for user-specified break date(s) in the file
of critical values. If the file does not contain information for a given sample size, the program
reports the nearest sample sizes in the file and halts. (In the next run, you may specify one of these
sample sizes for unit root testing.) If the break dates are not specified, the program uses all those
from the file of critical values for a given sample size. In the case that the file does not contain
critical values for specified break dates, the program uses those for the nearest relative break points,
Θ. Depending on the type of model, the program estimates model (1a)/(1b); if specified, model
(2a)/(2b) or (3a)/(3b) is estimated; again, if estimated, the program performs the Dickey-Fuller and
Phillips-Perron tests, using model (4a)/(4b). If a range of break dates is specified, the program
estimates model(s) for each break date from this range and then chooses the date yielding the
minimal sum of squared residuals, so estimating the break date. (The break dates for the nonlinear
model and the Perron-type model may differ.) Using data from the file of critical values, the
program performs the nonlinear unit root test, as well as the Perron test, if specified (i.e., finds a p-
value corresponding to estimated value of a statistic), using both estimated τ (τ0NL/τµNL and, maybe,
τ0P/τµP) and Zt(τ) which is the Phillips (1987) transformation of τ. (Thus, the latter is an analogue of
the Phillips-Perron test.1) The Newey-West (1994) automatic bandwidth selection method with the
Bartlett spectral kernel is used for this transformation.

1 Note that for models (1⋅) and (2⋅)/(3⋅), the validity of such a testing is not proved either theoretically or empirically.
However, a (moderate) number of experiments give an impression that it does work.

 5

Results. The program generates a number of EViews objects with outputs and saves them to the
user’s workfile. (There is a special mode of the program that cleans the file from these objects.)
These outputs are displayed on the screen as well. Depending on arguments specified for a particular
run, the set of outputs can differ. The full set is the following.

Table Description which consists of two parts. The first part reports arguments as they are
specified and as they are used by the program (including values taken by default of from the
previous run). The second part reports the sample size of analysed series and the sample size used
for testing, and lists the break dates (across which the break date is estimated) and the respective
absolute and relative break points. (If the break date is specified by user, the list contains the only
item.) Two values are reported; the first one is as specified (either by user or by default); the second
value is that for which the unit root test statistics are available. If the file of critical values contains
all needed data, these two values coincide. If it does not, the program takes statistics for available Θ
that is the nearest to the specified one. It may be the third part of Description that reports non-
critical errors, if they occur. Figure 2 provides an example of Description.

Figure 2. Description reported by the program AR(1) with break.

If you use statistics for, say, T = 100 rather than for T = 83, the lower panel of the table would look like
BREAK POINTS:
SAMPLE: t=0,...,83; TEST STATISTICS FOR: t=0,...,100

Date: specified 1998:08 1998:09
 test statistics for 1998:12 1998:12

Theta: specified 54 55
 test statistics for 58 58

Theta/T: specified 0.651 0.663
 test statistics for 0.700 0.700 etc.

That is, an available unit root test statistic for Θ nearest to 0.651, 0.663, etc., is that for Θ = 0.7.
(Currently, there are statistics for Θ = 0.1, 0.2,…, 0.9 in CriticalValues.xls for T =100.) The
corresponding absolute break points are calculated as θ = 0.7⋅83 rounded (where 83 is the sample
size of the analyzed series), which is equivalent to the break date 1998:12.

Equation Nonlinear is a standard EViews output for regression (1a)/(1b). It contains parameter

 6

estimates, a number of standard statistics, and some additional information. In this output, C(1) is
λ, C(2) is α, and C(3) is γ. C(2) does not appear if estimated equation is (1a).

Equations Perron_type and Original_Perron are standard EViews outputs for regressions
(2a)/(2b) and (3a)/(3b), respectively. Only one of them, if any, appears, depending on specification.
In the first output, C(1) is λ, C(2) is α, C(3) is γ, and C(4) is δ. In the second output, C(1) is
λ, C(2) is α, C(4) is δ, and C(5) is ψ. C(2) does not appear if estimated equation is (2a) or (3a).

Table UR_tests reports results of testing for a unit root. These are: estimated/user-specified break
date, τ-statistic and the relevant p-value, adjusted τ-statistic Zt(τ) and the relevant p-value, and the
number of lags found (with the use of the Newey-West method) while performing the Phillips
transformation. If estimation of the Perron-type model is not specified, the table reports results for
the nonlinear test only. Figure 3 provides an example.

Figure 3. Table UR_tests reported by the program AR(1) with break.

Tables Dickey-Fuller_test and Phillips-Perron_test are standard EViews outputs
for these tests. They contain both results of testing and estimates of (4a)/(4b).

The program also creates not displayed table Settings which contains arguments used in the current
run of the program. In the next run(s), the program takes unspecified arguments from this table. And
so, you need specify only arguments that have other values. Its contents looks, for example, like
SETTINGS:

series= _B
type= -nc

break= 1998:08-1999:02;1
CVfile= CriticalValues.xls

T= 100
Perron= yes,pt

DF= yes
keep= yes

Besides, the program stores a number of series Breakθ, where θ is some number (the break point).
These are break dummies for each break point used in the current and earlier estimations. You might
need them for some additional analyses. While program processes the arguments, it creates a table
Arguments. If there is an error in the argument list, the program halts and displays this table;
otherwise the program deletes it.

 7

Arguments. Arguments of the program may follow in any order. All arguments are optional. If an
argument is omitted, the program uses either a default value or a previous user-specified value from
Settings. However, you should specify at least the series to be analyzed if there is no
Settings in your EViews workfile.

Hereafter, the following notations are used in the description of arguments: <...> means some value
of argument or its part, [...] means an optional part of argument, | means “or”, and and so on means
replication of a previous expression; keywords are in thick print. Except for the filename, no blanks
can be tolerated within arguments.

The program uses the following 8 arguments:

series=<series name> is the name of a series (from your Eviews workfile) to be analyzed.
type=[-]nc|c is the type of equations to be estimated: nc means equations with no constant,

(1a), (2a)/(3a), and (4a); c means equations with constant, (1b), (2b)/(3b), and (4b). Minus
means a break to be reversed. By default, type=c.

break=<date1>[-<date2>[;<step>]] is a break date, θ + 1, or a range of break dates; <date1> and
<date2> should be specified as dates (according to the frequency in your workfile) rather than
the observation numbers. If range <date1>-<date2> is specified, the program runs estimations
for break points from <date1> through <date2> with increment <step>; then it takes the date
that yields the minimal sum of squared residuals. If <date2> is omitted, the only break point
<date1> is used. If the argument is omitted, the first and last break points available in the file
of critical values, θa and θb, are used; then <date1> = θa + 1 and <date2> = θb + 1. The default
value of <step> is 1.

CVfile=[<path>]<file name>] is the name of an (Excel) file with critical values of the tests (if
there are blanks in the path or/and file name, enclose the full name in quotes). By default,
CVfile=CriticalValues.xls. (It should be placed to the default – for your EViews –
directory; otherwise specify it.)

T=<number> is the sample size for test statistics. (Note that t = 0,...,T.) This argument is necessary if
the file of critical values does not contain the sample size that the processed series has. Then
you should specify a sample size you wish to use instead for testing. T=10000 stands for
asymptotic values. By default, the sample size in your workfile (minus one) is taken.

Perron=yes[,pt|,or]|no enables/disables estimating models (2a)/(2b) or (3a)/(3b); pt
means (2a)/(2b), while or stands for (3a)/(3b). By default, Perron=no; in the yes option,
the default is pt.

DF=yes|no enables/disables the Dickey-Fuller and Phillips-Perron tests. By default, DF=yes.
keep=yes|no is the indication whether to keep the program objects in your workfile. If yes, the

settings are used instead of default values unless replaced by new arguments. If keep=no, the
program removes its objects (including outputs) from your workfile. The only use of this is to
clean your workfile (running the program with the only argument keep=no) when you
complete your work. By default, keep=yes.

Examples. Let you have a file with time series _a, _b, and _c spanning 1994:01 through 2000:12
(then T = 83). Arguments

series=_a type=-nc break=1998:08-1999:02;1 Perron=yes,pt DF=yes
imply that series _a should be analyzed; in doing so, model (1a) with the reversed break should be
used; the break date should be searched in the interval of 1998:08 through 1999:02 with the one-
month step; model (2a) should be estimated as well; and the Dickey-Fuller and Phillips-Perron tests
should be performed. Omitted arguments are, by default, the following: CVfile=CriticalValues.xls

 8

T=83 keep=yes. That is, p-values of the nonlinear and Perron tests should be taken for T = 83 from
file CriticalValues.xls; results and some additional program objects should be kept.

If you specify
series=_b break=1998:10 Perron=yes,or DF=no ,

then the program will analyze series _b, provided that the break date is 1998:10; by default,
(type=c). The respective nonlinear model is (1b); the Perron-type model should be estimated in
form (3b). The Dickey-Fuller and Phillips-Perron tests will not be performed. Omitted arguments are,
by default, the following: type=c CVfile=CriticalValues.xls T=83 keep=yes (Hence, according
to the default specification, the models with intercept will be estimated.)

With arguments
series=_c type=-c T=100 CVfile=”c:\New stats\cv.xls” Perron=no DF=no ,

series _c will be analyzed, using equation (1b) with reversed break (in fact, provided that constant is
included, results do not depend on whether ordinary or reversed break is used); no estimation of a
Perron-type equation and no ordinary unit root tests will be performed. Critical values for the
nonlinear test will be taken for T = 100 from file cv.xls. Since the break argument is not
specified, the date of the break will be searched within interval from the first through the last break
date available in this file; the search will step across break dates for which the statistic is available.

2.2 CDFs of UR statistics with break

Function. This program estimates cumulative distribution functions (CDF) of the nonlinear and
Perron test statistics under the null hypothesis for a specified set of break points, as well as CDFs of
the Dickey-Fuller statistics τ0 and τµ. The number of replications and the type of equations are user-
specified.

Algorithm. In each replication, the program generates {εt}t=1,…,T ~ iid N(0,1) and construct a random
walk yt = yt-1 + εt (t=1,…,T) with y0 = 0. Then it estimates (4a) and (4b), and, depending of a
specified type of equations, either (1a) and (2a) or (1b) and (2b) for each of specified break points.
The breaks can be mixed. That is, in some of the break points, the breaks may be specified as
ordinary ones, while they may be specified as reversed in other break points. Having reached the
specified number of replications, the program computes the CDFs, using 1000 quantiles plus one
more for probability 0. (The program does not check accordance between the numbers of quantiles
and replications! Thus, having specified a small number of replications, you can obtain
unsatisfactory results.)

Results. The program generates and saves to disc an EViews workfile with a user-specified name.
The content of this file is the following (N denotes the number of replications, M denotes the
number of break points).

Table Description which reports conditions of a given estimation, namely, the type of models
(with constant/with no constant), sample size, number of replications (if the work is not completed,
the number of replications done is reported as well), and the list of break points. Besides, it reports
the time when program has started and finished, and elapsed time, as well as the list of arguments as
they have been specified. Figure 4 provides an example.

The main results are contained in the following matrices.
Matrix cdf_t_nl, 1001 × (M +1), is the CDFs of τ0NL or τµNL for each specified break point.
Matrix cdf_t_p, 1001 × (M +1), is the CDFs of τ0P or τµP for each specified break point.
Matrix cdf_df_nc, 1001 × 2, is the CDFs of τ0.
Matrix cdf_df_c, 1001 × 2, is the CDFs of τµ.

 9

The first column of these matrices is p-values from 0 through 1 with increment 0.001. The rest
columns are CDFs themselves. The number of a column corresponds to the number of a break point
in the Description plus one.

Figure 4. Description reported by the program CDFs of UR statistics with break.

The full sets of estimated statistics are saved in the following matrices. (This information may be
useful for some analytical work, e.g., to plot the probability density function of a statistic.)
Matrix t_nl, N × M, is the full set of estimated τ0NL or τµNL for each specified break point.
Matrix t_p, N × M, is the full set of estimated τ0P or τµP for each specified break point.
Matrix t_df_nc, N × 1, is the full set of estimated τ0.
Matrix t_df_c, N × 1, is the full set of estimated τµ.
The number of a column corresponds to the number of a break point in the Description.

Until the program completes, it saves in the workfile additional objects that are needed to continue
the work if it has been interrupted. Do not remove or change these objects.

Arguments. Arguments of the program may follow in any order, but all 5 of them should be
provided except for the case when the workfile already exists on disc (e.g., estimations are
processing in parts). Only the filename should be provided in such a case (then keyword file=
may be omitted).

The program uses the following 5 arguments:

file=[<path>]<file name> is the workfile name (if there are blanks in the path or/and file name,
enclose the full name in quotes, e.g., file=“c:\my path\my file.wf1”).

T=<number> is the sample size (t = 0,...,T). (In fact, in the workfile and program, it will be t = 1,...,T+1.)
N=<number> is the number of replications.

type=nc|c is the type of equations to be estimated: nc means equations with no constant, (1a)

and (2a); c means equations with constant, (1b) and (2b).
breaks=[-]<number A>,...,<number B>;<number C>

 10

 | [-]<number1>[,[-]<number2>][,[-]<number3>[,and so on]]]
is the list of break points. The upper form specifies them as a sequence from <number A>
through <number B> with increment <number C>; the lower one lists any number of specific
points. The break points may be specified either as relative or as absolute. However, these
types should not be mixed in the same list. Minus means a break(s) to be reversed. In the upper
form of the argument, - concerns all break points; in the lower one, it concerns the given break
point. (Note that <number C> may also be negative; this implies just a negative increment.
Then <number A> should be greater than <number B>.)
For example, breaks=10,…,90;10 specifies 9 break points: θ = 10, 20, 30, 40, 50, 60, 70, 80, 90. With
T = 100, an equivalent specifications are breaks=0.1,…,0.9;0.1 and breaks=0.9,…,0.1;-0.1. The
same for reversed breaks is breaks=-0.1,…,0.9;0.1 and breaks=-0.9,…,0.1;-0.1. Alternatively,
you may list all the break points: breaks=-0.1,-0.2,-0.3,-0.4,-0.5,-0.6,-0.7,-0.8,-0.9.
Figure 4 provides an example of mixed breaks, breaks=0.3,0.5,0.7,-0.5, which means that the statistics
will be estimated with Bθt for Θ = 0.3, 0.5, and 0.7, and again for Θ = 0.5 with B′θt.

Examples. Arguments
file=50c type=c T=50 N=200000 breaks=0.1,…,0.9;0.1

imply that the critical values of the tests including constant term will be estimated for sample of size
50 with 9 break points: θ = 5, 10, 15,…, 40, 45, using 200,000 replications. The results will be saved
to new EViews workfile named 50c.

If you specify
file="test 1" type=nc breaks=-75,25 N=10000 T=100 ,

then the program estimates critical values of the tests with no constant for sample of size 100 and
two break points: the first is θ = 75 (Θ = 0.75) with reversed break, and the second is θ = 25 (Θ =
0.25) with ordinary break; in doing so, the program uses 10,000 replications.

Specification
file="D:\Projects\UR statistics.wf1"

means that the file UR statistics.wf1 already exists on disk and contains incomplete work on
estimation of critical values (parameters of estimation as well as the number of replications
performed being stored in this file); the program will continue estimation until reaches N specified at
the very first start of this work.

3. The File of Critical Values

This file contains cumulative distribution functions (critical values) of the unit root test statistics
τ0NL, NL0τ ′ , τµNL, τ0P, P0τ ′ ,τµP, τ0, and τµ for a certain number of sample sizes and for a number of
break points. The statistics are obtained with the use of program CDFs of UR statistics with break.
This file is used by program AR(1) with break (as well as by Power) to find p-values of unit root
test, namely, τ0NL/ NL0τ ′ , τµNL, τ0P/ P0τ ′ , and τµP (program Power uses τ0NL/ NL0τ ′ , τµNL, τ0P/ P0τ ′ ,τµP, τ0,
and τµ).

The structure of the file is not rigid. Therefore, it contains a required sheet Map with a description of
the file organization. The names of the sheets with statistics are fixed. They are: Nonlin. tau-0
for τ0NL, Nonlin. tau-0(r) for NL0τ ′ , Nonlin. tau-mu for τµNL, Perron tau-0 for τ0P,
Perron tau-0(r) for P0τ ′ , Perron tau-mu for τµP, DF tau-0 for τ0, and DF tau-mu for
τµ. (Some of these sheets may be absent if you do not need respective statistics.)

The description of the file organization is the following.

 11

Cell B2 of Map indicates the number of column with p-values. (For some reasons, the numbers of
columns is used rather than their letterings. The provided file CriticalValues.xls contains in its
sheet Map a transition table between lettering of columns and their numbers.) The p-values
should be in the same column across all sheets with the statistics.

Cell B3 indicates the number of raw with break points. Break points should be in the same raw
across all sheets with the statistics.

Cell B4 indicates the total number of sample sizes for which statistics are available in the file. This
does not imply that there should be the full set of the statistics for each sample size. There may
be different sets of selected statistics for different sample sizes.

Cell B5 refers to the first raw of the statistics; and
cell C6 refers to their last raw. The statistics should begin from the same raw across all sheets with

the statistics. However, the statistics need not end in the same raw. Its number in cell C6 is the
maximal one; the length of columns with the statistics may vary across sheets. (The actual
indication of the end for the programs is p-value equaling 1.)

At last, cell B7 refers to the first row of the data allocation table. (This is reference to the first raw
with data, and not to the heading of the table.)

While the first raw of the data allocation table may be arbitrary, its first column is fixed. It is column
A. In this column of the table, the sample sizes – for which statistics are stored – are listed. The
subsequent columns report the number of the first and last columns of a given statistic for each of
the 6 statistics associated with breaks, and the number of column for the Dickey-Fuller statistics.
(The number of columns with a particular statistic, last column – first column + 1, is the number of
break points for which this statistic is available. This figure as well as the break points themselves
may vary across sample sizes and across different statistics with the same sample size. However,
when break points for nonlinear and Perron statistics does not coincide in number or in composition,
the program AR(1) with break skips the Perron test.) Namely,

columns B and C contain the number of the first and last columns with τ0NL (i.e., in the sheet
Nonlin. tau-0),

columns D and E contain the number of the first and last columns with NL0τ ′ (i.e., in the sheet
Nonlin. tau-0(r)),

columns F and G contain the number of the first and last columns with τµNL (i.e., in the sheet
Nonlin. tau-mu),

columns H and I contain the number of the first and last columns with τ0P (i.e., in the sheet
Perron tau-0),

columns J and K contain the number of the first and last columns with P0τ ′ (i.e., in the sheet
Perron tau-0(r)),

columns L and M contain the number of the first and last columns with τµP (i.e., in the sheet
Perron tau-mu),

column N contains the number a column with τ0 (i.e., in the sheet DF tau-0),
and column O contains the number a column with τµ (i.e., in the sheet DF tau-mu).

Empty number of the first column means that the respective statistic for a given sample size is not
available.

Figure 5 provides an example of sheet Map. The programs use data only from cells marked with
yellow. All the rest is optional comments. You may insert your own comments and store other
information in this sheet.

 12

Figure 5. Description of the file organization.

As seen from the figure, the file does not contain τ0NL, NL0τ ′ , τ0P, and P0τ ′ for sample of size 26;
there is no τ0NL, τµNL, τ0P, and τµP for sample of size 83; and NL0τ ′ and P0τ ′ are not available for T =
10000. For a given sample size, the allocation of data sometimes varies across sheets (because of
different sets of break points).

As follows from the preceding, each particular statistic should be a continuous block for each
sample size in the statistic sheet. These blocks may follow in any order by sample size (i.e., you
need not sort them by sample size). Blocks may be separated with an arbitrary number of columns,
empty or filled with some your additional data. But there should not be any additional columns
or/and rows within blocks. It is desirable that the break points for each sample size be arranged in
ascending order. (Generally, it does not matter; however, it is possible that some particular cases
exist that would cause errors, be the break points not sorted.) Rows of the statistics should follow in
ascending order of p-values. The data in the statistic sheets should be organized in accordance with
the description provided in the sheet Map.

Figure 6 provides an example of a statistic sheet. (It corresponds the description displayed in Figure
5.) The data used by the programs are in black print. Blue font marks optional comments. You may
insert your own comments and store other information in this sheet outside the statistic blocks.
Graphs are also allowable.

 13

Figure 6. Example of a statistic sheet in the file of critical values.

The programs check the data description. However, they do not check whether the data is actually
organized in accordance with it. A discrepancy can cause some (a priory unknown) error while
executing a program. In such a case, if you cannot find a mistake in your file of critical values,
please do not hesitate to contact me, providing the file and the program arguments used when the
error has occurred.

References
Enders, W. (1995). Applied Econometric Time Series. New York – Chichester – Brisbane – Toronto – Singapore: John

Wiley & Sons.
Gluschenko, K. (2005). Nonlinearly Testing for a Unit Root in the Presence of a Break in the Mean. Institute of

Economics and Industrial Engineering. (Mimeo).
 Available on http://econom.nsu.ru/users/gluschenko/research/papers/Gluschenko 2005 (mimeo).pdf.
Newey, W. K., and West, K. D. (1994). Automatic Lag Selection in Covariance Matrix Estimation. Review of Economic

Studies, 61, 631-653.
Perron, P. (1990). Testing for a Unit Root in a Time Series with a Changing Mean. Journal of Business and Economics

Statistics, 8, 153-162.
Phillips, P.C.B. (1987). Time Series Regression with a Unit Root. Econometrica, 55, 277-301.
Quantitative Micro Software, LLC (2001). EViews 4 User’s Guide.
Quantitative Micro Software, LLC (2004). EViews 5 User’s Guide.

 14

Appendix: Additional Programs

A.1 Experimenting with parameters

Function. This program estimates cumulative distribution functions (CDF) of the nonlinear and
Perron test statistics under the null hypothesis for a specified set of break points, as well as those of
the Dickey-Fuller statistics τ0 and τµ., under the null hypothesis or under a specified alternative. In
contrast to the program CDFs of UR statistics with break, this program allows to specify many
parameters of the data generating process, so yielding various processes other than pure random
walk.

Algorithm. In each replication, the program generates {εt}t=1,…,T ~ iid N(0,σ2) and construct a time
series yt = α + (λ+1)yt-1 + γBθt – γ(λ+1)Bθ,t-1 + εt with y0 ~ N(c, ζ 2). Parameters α, λ, γ, θ, σ, c, and
ζ 2 are user-specified (a set of values may be specified, but only for one of them). It may be specified
ζ 2 = 0; this means y0 to be fixed rather than random. Then the program estimates (4a) and (4b), and,
depending of a specified type of equations, either (1a) and (2a) or (1b) and (2b) for each value of a
parameter specified with a set of its values. Having reached the specified number of replications, the
program computes the CDFs, using 1000 quantiles plus one more for probability 0. (The program
does not check accordance between the numbers of quantiles and replications! Thus, having
specified a small number of replications, you can obtain unsatisfactory results.)

Results. The program generates and saves to disc an EViews workfile with a user-specified name.
The content of this file is the same as that of the file created by the program CDFs of UR statistics
with break; see Subsection 2.2 of this document. The difference is in the structure of the table
Description. Figure A1 provides an example of this table.

Figure A1. Description reported by the program Experimenting with parameters.

One more difference is in that M is the number of values in the value set specified for some
parameter (in Figure A1, such a parameter is γ; the number of its values is 6). Matrices cdf_df_nc
and cdf_df_c are now 1001 × (M +1); matrices t_df_nc and t_df_c are N × M. The number
of a column in t_nl, t_p, t_df_nc, and t_df_c corresponds to the number of value in the set
of values of a parameter (say, of γ, like in Figure A1); for cdf_t_nl, cdf_t_p, cdf_df_nc, and

 15

cdf_df_c, one should be added to the latter number, as the first column of these matrices is p-
values.

Arguments. Arguments of the program may follow in any order. Only 3 of all the arguments are
optional, having default values, namely y0, var(y0), and sigma. The rest arguments must be
specified except the case when the workfile already exists on disc (e.g., estimations are processing in
parts). Only the filename should be provided in such a case (then keyword file= may be omitted).

The program uses the following 11 arguments:

file=[<path>]<file name> is the workfile name (if there are blanks in the path or/and file name,
enclose the full name in quotes, e.g., file=“c:\my path\my file.wf1”).

T=<number> is the sample size (t = 0,...,T). (In fact, in the workfile and program, it will be t = 1,...,T+1.)
N=<number> is the number of replications.
type=nc|c is the type of equations to be estimated: nc means equations with no constant, (1a)

and (2a); c means equations with constant, (1b) and (2b).
break=[-]<number1>[,[-]<number2>][,[-]<number3>[,and so on]]] is the relative break

point(s), Θ; minus means a break to be reversed.
[y0=<number1>[,<number2>][,<number3>[,and so on]]]] is the mean(s) of the initial value, c.

This argument is optional; by default, y0=0.
[var(y0)=<number1>[,<number2>][,<number3>[,and so on]]]] is the variance(s) of the y0, ζ 2.

Zero value of it implies that y0 is a fixed constant (specified by the above argument) rather than
random. This argument is optional; by default, var(y0)=0.

gamma=<number1>[,<number2>][,<number3>[,and so on]]]] is the value(s) of the break height, γ.
const=<number1>[,<number2>][,<number3>[,and so on]]]] is the value(s) of the constant, α.
lambda=<number1>[,<number2>][,<number3>[,and so on]]]] is the value(s) of λ.
[sigma=<number1>[,<number2>][,<number3>[,and so on]]]] is the standard deviation(s) of the

innovations, σ. This argument is optional; by default, sigma=1, i.e., εt ~ iid N(0,1).

Examples. Arguments
file=”50nc,across y0” type=nc T=50 N=200000 break=0.5 y0=0,1,3,5,10 var(y0)=0

const=0 gamma=0 lambda=0 sigma=1

imply the data generating process to be yt = yt-1 + εt with t = 0,…,50, {εt} ~ iid N(0,1), and y0 = 0, 1,
3, 5, and 10 (as it is specified α = 0, λ = 0, γ = 0, ζ 2 = 0, and σ = 1, and a set of values is provided
for y0); the program will estimate CDFs of the t-ratio of λ in no-constant type equations (1a) and
(2a) with the break dummy switching from 0 to 1 at t =50⋅0.5+1 = 26, using 200,000 replications.
The results will be saved to file named 50nc,across y0.wf1.

With arguments
file=test type=c T=150 N=20000 break=0.5 lambda=-0.1 gamma=2 const=0.5 sigma=0.5

y0=1 var(y0)=0,1,4,10,25,100 ,

the data generating process will be yt = 0.5 + 0.9yt-1 + 2(Bθt – 0.9Bθ,t-1) + εt with t = 0,…,150 and
{εt} ~ iid N(0,0.52). The CDFs will be estimated for equations (1b) and (2b) with Bθt switching from
0 to 1 at t =150⋅0.5+1 = 76, using 20,000 replications. For each statistic, there will be 6 CDFs
corresponding to y0 = 1 (i.e., y0 ~ N(1, 0)), y0 ~ N(1, 1), y0 ~ N(1, 4),…, y0 ~ N(1, 100). The results
will be saved to file named test.wf1.

 16

A.2 Power

Function. This program estimates power of the nonlinear and Perron test as well as that of the
Dickey-Fuller test (for a given test size) under a user-specified alternative for different values of λ.
The program uses file CriticalValues.xls that contains critical values of the above tests. (These
values are obtained with the use of the program CDFs of UR statistics with break.) See Section 3 of
this document for the description of this file. (It is possible to use a different file with critical values;
it should have a certain structure described in Section 3 of this document.)

Algorithm. At first, the program finds critical values of the tests for a given sample size, test size,
and break point in the file of critical values. The absence of some (or even all) data does not prevent
program from execution; in such a case, the respective powers just will not be estimated. Then the
powers are estimated. In each replication, the program generates {εt}t=1,…,T ~ iid N(0,σ2) and
construct a time series yt = α + (λ+1)yt-1 + γBθt – γ(λ+1)Bθ,t-1 + εt with y0 ~ N(c, ζ 2). Parameters α,
λ, γ, θ, σ, c, and ζ 2 are user-specified; a set of values may be specified for λ. It may be specified ζ 2
= 0; this means y0 to be fixed rather than random. Then the program estimates regressions (4a), (4b),
(1a), (1b), (2a), and (2b) for each specified value of a λ. Estimated t-ratios of λ are compared with
critical values, summing the cases of rejection the unit root hypothesis. Having reached the specified
number of replications, the program computes the probabilities of rejection, dividing frequencies to
the number of replications.

Results. The program generates and saves to disc an EViews workfile with a user-specified name.
This file contains the table Results which reports both conditions of the estimation and the results
obtained (as well as non-critical errors in the critical values file). Figure A2 provides an example.
The estimated powers are also saved in matrix power.

Figure A2. Results reported by the program Power.

 17

In the table Results, Row 12 contains the names of the tests. “DF tau-0” stands for the Dickey-
Fuller τ0-test associated with model (4a); “DF tau-mu” stands for the Dickey-Fuller τµ-test
associated with model (4b); “Nonlin. tau-0” stands for the nonlinear τ0NL-test associated with model
(1a); “Nonlin. tau-mu” stands for the nonlinear τµNL-test associated with model (1b); “Perron tau-0”
stands for the Perron τ0P-test associated with model (2a); “Perron tau-mu” stands for the Perron τµP-
test associated with model (2b). Row 14 reports critical values of the respective tests for a given test
size. Lines 17 through 21 (the number of the last line may differ in other estimations) tabulate the
results of the power estimation.

Arguments. Arguments of the program may follow in any order. Only 4 of all the arguments are
optional, having default values, namely y0, gamma, sigma, and CVfile. The rest arguments
must be specified except the case when the workfile already exists on disc (e.g., estimations are
processing in parts). Only the filename should be provided in such a case (then keyword file=
may be omitted).

The program uses the following 11 arguments:

file=[<path>]<file name> is the workfile name (if there are blanks in the path or/and file name,
enclose the full name in quotes, e.g., file=“c:\my path\my file.wf1”).

T=<number> is the sample size (t = 0,...,T). (In fact, in the workfile and program, it will be t = 1,...,T+1.)
N=<number> is the number of replications.
size=<number> is the size of the tests.
lambda=<number A>,...,<number B>;<number C>
 | <number1>[,<number2>][,<number3>[,and so on]]]

is the list of the values of λ. The upper form specifies them as a sequence from <number A>
through <number B> with increment <number C>; the lower one lists any number of specific
values.

const=<number> is the value of the constant, α.
break=[-]<number> is the relative break point(s), Θ; minus means a break to be reversed.
[gamma=<number>] is the value of the break height, γ. This argument is optional; by default,

gamma=0.
[y0=<number> | N(<number1>,<number2>) | N(<number1>,T)] is the initial value, y0. The first

option specifies it as a constant equaling <number>. The other two specify y0 as a normal
random variable with the mean <number1> and the variance <number2> or equaling the sample
size, T. This argument is optional; by default, y0=0.

[sigma=<number>] is the standard deviation of the innovations, σ. This argument is optional; by
default, sigma=1, i.e., εt ~ iid N(0,1).

[CVfile=[<path>]<file name>] is the name of an (Excel) file with critical values of the tests (if
there are blanks in the path or/and file name, enclose the full name in quotes). This argument is
optional; by default, CVfile=CriticalValues.xls. (It should be placed to the default –
for your EViews – directory; otherwise specify it.)

Example. Arguments
file=c:\UR\Power100.wf1 size=0.05 N=200000 lambda=-0.2,-0.1,-0.05,-0.01,0 T=100

break=0.5 y0=0 gamma=2 const=0.5 sigma=1

imply estimating power of the 5%-size tests under the alternative yt = 0.5 + λyt-1 + 2(Bθt – (λ+1)Bθ,t-1) + εt
with t = 0,…,100, break at t = 51, y0 = 0, and {εt} ~ iid N(0,1) across λ = -0.2, -0.1, -0.05, -0.01,
and 0, using 200,000 replications. Critical values of the test will be drawn from CriticalValues.xls;
results will be stored in file Power100.wf1 written to folder UR of disc C.

