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1. Introduction 

The programs deal with a time series models containing nonlinear asymptotically subsiding trends. Such 
models describe convergence of incomes, outputs, prices, etc. in the time series context.  

The programs are applicable in EViews 7 and later versions. They are provided in ASCII format with 
extension .prg and are ready for use with EViews; all you need is to copy programs to your computer. The 
programs use file TauStatistics-NonlinearTrends.xls which is also provided. You have to copy this file as 
well and place it to the default (for your EViews) directory. You may modify this file or create such a file 
by yourself. To do so, you should know its structure which is described in Section 5 of this document. 

The programs are licensed to be available to users to download, copy, use, and modify (except for a 
commercial use). I hope that in doing so you will acknowledge me as the original creator.    

The package consists of six programs: 

Testing_Convergence.prg estimates models for a single time series or the difference between two series 
and test them for unit root;  

Testing_Convergence (Batch).prg estimates models for the differences between every time series from a 
specified group and a series specified as a benchmark; the program also tests these models as well as the 
Dickey-Fuller models with and without constant for unit root; 

Testing_Convergence (Total).prg estimates models for differences between two series in all pairs of 
series from a specified group; the program also tests these models as well as the Dickey-Fuller models 
with and without constant for unit root; 

CDF of UR statistics with Log-exponential trend.prg, CDF of UR statistics with Exponential 
trend.prg, and CDF of UR statistics with Fractional trend.prg are auxiliary programs; they estimate 
cumulative distribution functions (СDF) of the unit root test statistics (tau-statistics) under the null 
hypothesis for equations with the respective trend and a specified sample size. These results are used to 
fill file TauStatistics-NonlinearTrends.xls file (for example, to replace CDF with that obtained with more 
replications, or to add CDF for an additional sample size). 

 

2. The models 

The starting point is the following time-series definition of convergence: Economic entities r and s 
described by an indicator Y converge over time, t, if 

(1)   0)/log(lim 


strt
t

YY . 

(See Bernard and Durlauf, 1995, or Durlauf and Quah, 1999, for a more evolved definition.)  

Such a process can be described by an asymptotically subsiding trend h(t) such that dh(t)/dt < 0 and   
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h(t)  0 as t  . The package deals with three kinds of such trends, namely, 

 log-exponential trend h(t) = log(1 + et),  < 0; 

 exponential trend h(t) = et,  < 0; 

 fractional trend h(t) = 
t


1

,  > 0. 

 A time series yrst = log(Yrt/Yst) is modeled by a first-order autoregressive process, AR(1), with trend h(t): 

(2)  yrst = h(t) + t, t = ( + 1)t–1 + t, 

where  + 1 is the autoregressive coefficient and t is a white noise. Applying the Cochrane-Orcutt 
transformation (i.e., substituting the second equation in (2) into the first one), we get a nonlinear 
econometric model to be estimated and tested: 

(3)  yrst = yrs,t–1 + h(t) – ( + 1)h(t – 1) + t. 

The specific models with the above trends have the following forms, respectively (t = 2,…,T): 

(3a)  yrst = yrs,t –1 + log(1 + et) – ( + 1)log(1 + e(t – 1)) + t; 

(3b)  yrst = yrs,t –1 + et – ( + 1)e(t – 1) + t = yt–1 + et + t, where  = (1 – ( + 1)e–); 

(3c)  yrstt = yrs,t –1 + 
t


1

 – ( + 1) 
)1(1  t


 + t. 

If hypotheses  = 0 (against  < 0),  = 0 (against   0), and  = 0 (against   0) can be rejected, yrst is a 
trend stationary process about the given nonlinear trend. With the “right” sign of , convergence between 
r and s takes place; the “wrong” sign of  ( > 0 in the log-exponential and exponential trends or  < 0 in 
the fractional trend) implies divergence. 

Note that there is confusion regarding the term “convergence” in the literature. Model (3) in fact describes 
a superposition of two processes that can be called long-run, or deterministic, convergence, and stochastic, 
or short-run, convergence. Long-run convergence is a deterministic path of yrst that tends to zero over time 
(catching-up, or, so to say, “genuine convergence”). Short-run convergence is an autocorrelated stochastic 
process containing no unit root (i.e., a stationary process), t = ( + 1)t–1 + t. Intuitively, short-run 
convergence characterizes the behavior of transient random shocks. A unit shock deviates the process 
from its long-run path, dying out over time with half-life  = ln(0.5)/ln( + 1), so that yrst eventually 
returns to its long-run path. It is the later process that is sometimes called “convergence” in the literature.  

An advantage of the log-exponential trend is the ease of interpretation. Parameter  is the initial (at t = 0) 
disparity, i.e., the deviation of Yr0/Ys0 from 1. Parameter  characterizes the convergence rate which can be 
simply expressed in terms of the half-life time of the (deterministic) disparity, or semi-convergence (see 
Table 1). A shortcoming of this trend is in that is has no symmetry properties with respect to a 
permutation of the economy indices. Albeit yrst = –ysrt, the permutation changes values of  and  (and 
may change the estimate of  in regression (3a), hence, p-value of unit root test). Contrastingly, the 
exponential and fractional trends have symmetry properties. A permutation of r and s changes only the 
sign of , leaving its absolute value and the value of  as well as  in (3b), (3c) intact. However, while the 
initial disparity can be easily calculated from , the half-lives of the deterministic disparity involve a 
mixture of  and ; besides, they depend on t. This results in hardly interpretable expressions.  

Table 1 reports initial disparities, Yr0/Ys0 – 1, and half-life times of the (deterministic) disparity   Yrt/Yst – 1 
(the time the disparity takes to halve) in terms of the model parameters. The half-life time (1/2) is such 
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that Yr,t+/Ys,t+ – 1 = (Yrt/Yst – 1)/2. In the case of divergence, its rate is characterized by the doubling 
time (2), i.e., the time the disparity takes to double: Yr,t+/Ys,t+ – 1 = 2(Yrt/Yst – 1). As the half-life times 
and doubling times for the exponential and fractional trends depend on t, the table reports these times for 
halving/doubling the initial disparity. If e  0.5 with diverging exponential or fractional trend, the 
doubling time is computed with  replaced by its absolute value. 

 
Table 1. Interpretation of the model parameters 

Trend Initial disparity, Yr0/Ys0 – 1 Half-life time (1/2) Doubling time (2) 
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3. Estimation and testing 

3.1. Estimation 

The programs estimate models (3a)–(3b) with the use of nonlinear least squares, benefiting from the built-
in EViews procedure. They set the maximum number of iterations M to 1000, and the convergence 
tolerance C (see, e.g., Quantitative Micro Software, 2010b, p. 627) to 10-7. The operators that call the 
estimation procedure look like <Equation name>.ls(M=1000,C=1e-07) <Specification>. 

Since the sum of squared residuals can be multiextremal, the estimations are repeated with the use of 
different sets of initial values of , , and . These are estimates in simplified versions of Equation (3). 
Table 2 reports the ways of obtaining initial values of the coefficients. The estimation of regression (3a) 
applies all seven sets of initial values; estimating regression (3b) applies six sets; and regression (3c) is 
estimated with the use of five sets. Out of all estimates obtained with different initial values of the 
coefficients, an estimate that yields the best fit (minimal sum of squared residuals) is selected.  

In some cases, the iterative procedure of estimating will not converge under the specified number of 
iterations and specified convergence tolerance. Some other errors may occur as well, such as non-positive 
number in a logarithm, overflow, division by zero, etc. (for instance, when EViews tries values beyond the 
domain of parameters). A part of such errors can be reported during the execution of programs, not 
interrupting the execution if the number of errors does not exceed the user-specified (in the Run window of 
the program) value of Maximum errors before halting. (Therefore, ignore such messages.) While trying different 
sets of initial values, programs simply skip unsuccessful estimations. If estimations with all sets of initial 
values fail, different programs process such an event in their own way; see the description of specific 
programs in Section 4. 

Programs Testing_Convergence (Batch) and Testing_Convergence (Total) also estimate linear AR(1) 
models, that with constant, 

(4)  yrst = yrs,t–1 +  + t, 

and without constant, 

(5)  yrst = yrs,t–1 + t. 
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Table 2. Estimating initial values of coefficients 

Assumption Auxiliary regression(s) Initial values of coefficients in (3) 
Zero parameters 
 = 0,  = 0,  = 0  0 = 0, 0 = 0, 0 = 0 
 = 0,  = 0 yt = yt-1 + t 0 = ̂ , 0 = 0, 0 = 0 
 = 0 yt = yt-1 +  + t  0 = ̂ ,  

0 = 1)ˆ/ˆexp(    for (3a), 

0 =  ˆ/ˆ  for (3b) and (3c), 
0 = 0 

Linear approximations 
ln(1 + et)  (1 + t), 
et  (1 + t), 
/(1 + t)  (1 – t) 

yt  = yt-1 +  + t + t, 
where  = ( + 1) –  , 
 = –  for (3a) and (3b) or  
 =   for (3c) 

0 = ̂ , 0= 2ˆ/)ˆ)1ˆ(ˆˆ(   ,  

0 = 0ˆ/ˆ   for (3a) and (3b),  

0 = 0ˆ/ˆ   for (3c) 

Semi-linear approximation (for (3a) only) 
et  1 + t yt = yt-1 + ln(1 + (1 + t)) –  

– ( + 1)ln(1 + (1 + (t – 1)) + t  
0 = ̂ , 0 = ̂ , 0 = ̂  

Semi-linear approximation for (3a) and simplified equation for (3b) 
ln(1 + et)  et for (3a), 
et – ( + 1)e(t – 1) = e  
for (3b) 

yt = yt-1 + et + t,  
where  = (1 + ( + 1)e–) 

0 = ̂ , 0 = ))1ˆ(1/(ˆ ̂  e , 0 = ̂  

Detrending yt = ln(1 + et) + t for (3a),  
 yt = et + t for (3b),  
 yt = /(1 + t) + t for (3c),  
 and ttt   1ˆˆ  0 = ̂ , 0 = ̂ , 0 = ̂  

   

These models describe cases of non-convergence with the disparity remaining time-invariant (up to 
random shocks). In equation (4), yrst = –/ or Yrt/Yst – 1 = e–/ – 1. Equation (5) corresponds to the case of 
the absence of disparity: yrst = 0. The programs use the built-in EViews procedure to estimate these 
equations. In program outputs and elsewhere, model (4) is called ARc, and model (5) is called ARo.   

It can occur that time series yrst satisfies no one of models (3), (4), and (5). Two reasons of this are 
possible. First, process yrst follows a random walk. Second, both the null hypothesis of random walk and 
the alternative hypothesis are wrong. That is, the process yrst has some regularity (for example, has a U-
shape trend); however, the models applied are not able to describe it.  

3.2. Testing for unit root 

The programs exploit two unit root tests, the augmented Dickey-Fuller (ADF) test and Phillips-Perron 
(PP) test. These tests make it possible to take account of possible autocorrelation of a form other than 
AR(1). Testing hypotheses  = 0 (against  < 0), both tests use the t-ratio of  (hereafter, tau-statistic) 

 ˆ/ˆ . However, they modify it in different ways. To find p-value of a (modified) , the programs use 

file TauStatistics-NonlinearTrends.xls that contains the cumulative distribution functions of  for 
equations with the above trends and different sample sizes.  

The programs perform the ADF test in the following manner. At first, they find the optimal lag length. To 
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do so, a detrended series is generated as )(ˆ~ thyy rstrst  , where )(ˆ th  is the estimate of trend in (3): 

))ˆexp(ˆ1log()(ˆ tth  , or ))ˆexp(ˆ)(ˆ tth  , or )ˆ1/(ˆ)(ˆ tth   . Then the built-in EViews procedure of 
the ADF test is applied to the detrended series y~  with the use of operator URoot(ADF, none, info=MSIC, …) ỹ, 

which yields the optimal lag length k*. Note that the modified Schwartz (Bayesian) information criterion 
with a sample-dependent penalty factor is used, and not a standard criterion. This modification is due to 
Ng and Perron (2001), who note that the standard information criteria tend to select lag lengths that are 
generally too small for unit root tests to have good sizes. Having found the optimal number of lags k*, the 
programs estimate the following auxiliary regression:  

(6)  tltrs

k

l
ltrsrst yththyy   


  ,

*

1
1,0 )1()1()( . 

This provides the ADF test statistic 
0

ˆ/ˆ0ADF   . Then programs draw p-value of ADF for equation 

with the respective trend from the file TauStatistics-NonlinearTrends.xls. The programs estimate 
regression (6) in the same manner as they do to estimate regression (3); see Section 3.1. The difference is 
that the initial values of l are always l = 0 for all l > 0.  

Note that the role of regression (6) is merely technical. It serves for obtaining the value of ADF only. The 
programs take estimates of  and other regression parameters from the original regression (3).  

To perform the PP rest, programs compute its statistic with the autoregressive spectral density estimator 

at frequency zero 2
0  (in contrast to commonly used kernel-based estimators), benefiting from results 

obtained while performing the ADF test: 

  










ˆ2
ˆ))ˆ()(1()ˆ( 22

0
2
0

2

PP



T

, 

where  2*
1

22
0 )ˆ1/()ˆ(   k

l l  (Perron and Ng, 1998) and ̂  is the standard error of regression: 

)4/(ˆˆ 2
22

ˆ   T
T
t t , T – 4 being the degrees of freedom. Estimates ̂ , ̂ , )ˆ(2  , and ̂  are those 

from regression (3), while l̂  are estimates from regression (6). The application of the OLS autoregressive 

spectral method bases on Perron and Ng (1996) in order to avoid size distortions peculiar to the PP test 
with kernel-based estimators. The programs draw p-value of PP for equation with the respective trend also 
from the file TauStatistics-NonlinearTrends.xls.  

When there are no additional lags, i.e. k* = 0, ADF = PP = .  

To test regressions (4) and (5) for unit root, programs Testing_Convergence (Batch) and 
Testing_Convergence (Total) use the built-in procedures of EViews with the same options as above, 
namely, the use of the modified Schwartz criterion and the OLS (not-detrended) autoregressive spectral 
method.  

The operators URoot(ADF, const, info=MSIC, …) and URoot(PP, const, hac={%AR}, info=MSIC, …) for (4), and the 
operators URoot(ADF, none, info=MSIC, …) and URoot(PP, none, hac={%AR}, info=MSIC, …) for (5) in these programs 
call the respective procedures. There is a mistake in EViews 7: it misinterprets parameter hac=AR as 

hac=ARdt (OLS detrened). Therefore, to force executing the desirable versions of the PP test by EViews, 
formally incorrect value of hac is set by operator %AR=”ARdt”. If the mistake is corrected in a later of 
EViews, this operator in the above programs should be changed to %AR=”AR”.  



 6

Note that the applied versions of the tests are more severe in rejecting unit root than commonly used 
versions. The latter may cause over-rejections of the unit root hypothesis by the ADF test due to the 
choice of the lag length on the basis of standard information criteria (Ng and Perron, 2001). They may 
also cause over-rejections of the unit root by the PP test due to kernel-based spectral density estimators 
(Perron and Ng, 1996).  

 

4. Instructions to the programs 

4.0 Executing a program 

This section is valid for EViews 7. Later versions can contain some additional options or changes in 
dialog boxes, settings, etc. However, these are hardly fundamental; I think the instructions below can be 
easily applied to a newer version of EViews.  

To run a program, the standard way is used; see, e.g. Quantitative Micro Software (2010a). To load a 
program, click on File  Open  Program... in the EViews main menu, choose a program you 
need and open it.   

 To run the program, click on the Run button on the program window. On the Reporting tab of the 
Run Program dialog box, use the radio button to choose Quiet mode. In the Log messages 
section, specify Program lines: Always off, Status line messages: Program 
controlled, User log messages: Program controlled, Program errors: 
Program controlled.  

On the Settings tab, set the Maximum errors before halting to a maximum possible 
number (in EViews 7, 10,000). Then EViews will continue running the program until this number of 
errors is reached. Note that even 10,000 may prove insufficient for programs CDF of UR statistics with 
Log-exponential trend, CDF of UR statistics with Exponential trend, and CDF of UR statistics with 
Fractional trend, especially for the first of them, when they should execute a great number of replications 
(e.g. 1 million). Section 4.4 explains what to do in this case.  

On the Settings tab, you should also specify Program 
arguments. They depend on a specific program; Sections 
4.1–4.4 describe arguments of respective programs. After 
all, push OK button on the Run Program dialog window 
to start the program.  

Figure 1 shows examples of starting a program in EViews 7. 

Programs Testing_Convergence, Testing_Convergence 
(Batch), and Testing_Convergence (Total) load file 
TauStatistics-NonlinearTrends.xls from the current data 
directory of EViews. To set it, go through Options  
General Options…  File locations in the 
EViews main menu and fill out the Current Data 
Path section. While loading file TauStatistics-
NonlinearTrends.xls, these programs check it and halt if 
they encounter a non-recoverable error in the file, reporting 
the error in the status line (at the lower left corner of the 
EViews window). If TauStatistics-NonlinearTrends.xls 
does not contain information for a sample size T specified 

 

Figure 1. Starting program  Testing_Convergence 



 7

in the workfile, the programs take the nearest sample size smaller than T (or greater, if there is no smaller 
sample size), reporting this in a program-specific way.  

Programs Testing_Convergence, Testing_Convergence (Batch), and Testing_Convergence (Total) need a 
workfile with time series to be analyzed. Therefore, you should have such a file opened before starting a 
program.  

4.1 Testing_Convergence 

Function. This program analyzes models (3a), (3b), and (3c) for a single time series or the difference of 
two series (the series are supposed then to be logarithms of an indicator under consideration).  

Arguments. Arguments of the program have the form <series1> [<series2>], containing the name/s of 
time series to be analyzed. Hereafter, <...> means some value of argument. 

Source data. The program uses an EViews workfile with time series to be analyzed as well as file 
TauStatistics-NonlinearTrends.xls with the distributions of -statistics.  

Execution. At first, the program checks whether series1 (and series2, if specified) exists in an opened 
workfile. If one (or both) does not, the program reports this in the status line and stops. When two series 
are specified, the program generates series series1 – series2 with the name series1_series2 (truncating it to 
24 symbols if needed) and saves it to the opened workfile. (Note that the truncated name can coincide 
with a name of existing series which will be overwritten. In such a case you need to make a relevant 
renaming/s.) Then the program estimates models with the given series and tests them for unit root as 
described in Section 3.  

Results. The program puts on the 
screen three tables 
LOG_EXPONENTIAL_TREND_, 
EXPONENTIAL_TREND_, and 
FRACTIONAL_TREND_. These 
tables are similar to standard 
EViews outputs for equations; 
however, they contain results of 
testing for unit root. The program 
saves these tables as well as 
standard outputs named 
LOG_EXPONENTIAL_TREND, 
EXPONENTIAL_TREND, and 
FRACTIONAL_TREND to the 
opened workfile. If the program 
is unable to estimate some model, 
it outputs the program log with 
message Estimation of equation 
<EQUATION NAME> is impossible 
instead of the equation output.  

Figure 2 provides an example of 
an output table. The reported 
results of testing for unit roots are 
estimated  tau-statistics PP and ADF, their p-values, as well as the bandwidth for the PP test and the lag 
length for the ADF test (under the applied method of unit root testing – see Section 3.2, the bandwidth and 
lag length coincide). In this example, you can see the way of reporting the case of lacking sample size.  

Figure 2. One of output tables reported by program Testing_Convergence 
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4.2 Testing_Convergence (Batch) 

Function. This program analyzes models (3a), (3b), (3c), (4), and (5) for the differences of every series in 
the specified group and a series specified as the benchmark.  

Arguments. Arguments of the program have the form <group> <benchmark series> containing the name 
of the series group to be analyzed and the series serving as a benchmark. The benchmark series may be a 
member of the specified group or be beyond the group. 

Source data. The program uses an EViews workfile with time series to be analyzed as well as file 
TauStatistics-NonlinearTrends.xls with the distributions of -statistics.  

Execution. At first, the program checks whether group and benchmark series exist in an opened workfile. 
If one (or both) does not, the program reports this in the status line and stops. Then the program analyzes 
models with given series (as described in Section 3) in the following order: (3a)  (3b)  (3c)  (4) and (5). 
Every model is analyzed for all generated series yr – y*, where y* is the benchmark series (the generated 
series are not saved). Series yr are processed in their order in the specified group (that not necessary 
coincides with their alphabetical order in the workfile). The program reports the progress of execution in 
the status line, indicating the model being analyzed and current number of series, e.g., exp trend: r=17.  

Results. The program stores the results obtained in the output table named ESTIMATES_<benchmark>. 
If such a name exceeds 24 symbols, the program reports this in the program log as ESTIMATES_<benchmark> 

is an illegal or reserved name in "RENAME ESTIMATES ESTIMATES_<benchmark>" and names the table simply 
ESTIMATES. Then you need to rename it as you wish. 

Figure 3 shows an example of the output table. 
  

The output table contains coefficient estimates (the column named lambda, gamma, and delta), their standard 
errors (se) and p-values, information on unit root tests, namely, -statistics , PP, and ADF (named t, PP-t, 
and ADF-t),  p-values of the PP and ADF tests (p-value), bandwidth and lag length (Bandwidth and lags), 
adjusted R2 (AdjR2), and sum of squared residuals (SSR). Besides, the table contains initial disparity in 
percentage terms (Disparity, %) and halflife/doubling time (Halflife) computed as indicated in Table 1. If it is 
impossible to compute these indicators (because of too great ), they are displayed as NA.  

Figure 3. An example of the output table generated by program Testing_Convergence (Batch) 
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There are five rows with the results for every series; each row corresponds to a respective model. If the 
benchmark series is a member of the group, these rows are empty for it (containing indication Benchmark 

location).    

Cells with p-values of the unit root tests and coefficients exceeding 0.1 are colored in yellow. Cells with  
corresponding to divergence and the respective doubling times are colored in red. If estimation of some 
model has failed, the relevant row contains indication Estimation impossible. Specifications of valid models 
(i.e. with all p-values not more than 0.1) are marked in bold font. If more than one model with nonlinear 
trend is valid, bold font marks a model with the minimal SSR.  

After rows with the results, the program indicates the benchmark location, execution time, and sample 
sizes of -statistics drawn from TauStatistics-NonlinearTrends.xls.  

4.3 Testing_Convergence (Total) 

Function. This program analyzes models (3a), (3b), (3c), (4), and (5) for the differences between series in 
every pair of series from the specified group.  

Arguments. The first arguments of the program is <group>, specifying the name of the series group to be 
analyzed. Optional arguments may follow in any order. Argument ADF=no or PP=no switches off the 
respective unit root test; both tests are performed by default. Arguments log=no, exp=no, and 
fract=no make it possible to switch off analyzing models with log-exponential trend, exponential trend, 
ad fractional trend, respectively (only one or two such arguments are possible); all three models are 
analyzed by default. 

Source data. The program uses an EViews workfile with time series to be analyzed as well as file 
TauStatistics-NonlinearTrends.xls with the distributions of -statistics.  

Execution. At first, the program checks whether group exists in an opened workfile. If it does not, the 
program reports this in the status line and stops. Then the program checks the correctness of optional 
arguments (if they are specified), halting in the case of error. After that the program analyzes models with 
given series (as described in Section 3) in the following order: (3a)  (3b)  (3c)  (4) and (5). Every 
model is analyzed for all generated series yrs = yr – ys, s > r (the generated series are not saved). Thus, 
there are N(N – 1)/2 pairs of series, where N is the number of series in the specified group; {r} and {s} are 
the series numbers in the specified group (that not necessary correspond to their order in the workfile). 
Since unit root can be accepted in model (3a) for yrs and rejected for ysr (see Section 2), this model is 
additionally estimated with ysr in the case of non-rejection of unit root for yrs.  

The program reports the progress of execution in the status line, indicating the model being analyzed and 
current numbers of series, e.g., exp trend: r=17, s=21.  

Results. The program stores the results obtained in the output table PAIRWISE_SUMMARY and matrix 
PAIRWISE_MATRIX.  

Table PAIRWISE_SUMMARY contains summarized results of the analysis. For every time series r it 
reports the number of other series s (s = 1, …, N, and s  r) for which the difference series yrs = yr – ys is 
described by model (5) – ARo, by model (4) – ARc, at least by one version of model (3) with the correct 
sign of  – Converging, at least by one version of model (3) with incorrect sign of  – Diverging, and 
described by no one model – No model. The total equals N – 1. These results relate to two approaches: 
specific to general and general to specific. In the first case, the first valid model in the sequence (5)  (4) 
 (3) is taken as describing process yrs. (A model is deemed valid if p-values of the unit root test/s and all 
coefficients are no more than 0.1.) The general-to-specific approach considers the reverse sequence: (3)  
(4)  (5).  
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Note that the total of all rows and columns under a given approach equals N(N – 1), i.e., twice the number 
of series pairs, as every series enters in pairs (r, s) and (s, r).    

After rows with the results, the program reports the execution time and sample sizes of -statistics drawn 
from TauStatistics-NonlinearTrends.xls.    

Figure 4 shows an example of table PAIRWISE_SUMMARY. 
 

 
Matrix PAIRWISE_MATRIX contains details of the estimations. Its (r, s)-th element is a 4-digit figure; a 
digit equaling 1 means that the relevant model is valid for series yrs:  
         XXXX  
          |  |  |  |_ ARo (model (5) is valid)    
          |  |  |__ ARc (model (4) is valid) 
          |  |___ Convergence (at least one version of model (3) is valid)  
          |____ Divergence (at least one version of model (3) is valid with "wrong" sign of ). 

Zero value of an element implies that no one model describes the respective series. 

4.4 CDF of UR statistics with … trend  

Function. These programs estimate cumulative distribution function (CDF) of the unit root test statistics () 
under the null hypothesis of unit root for a respective version of model (3) and user-specified sample size. 
Program CDF of UR statistics with Log-exponential trend.prg do this for model (3a); program CDF of UR 
statistics with Exponential trend.prg do this for model (3b); and program CDF of UR statistics with 
Fractional trend.prg do this for model (3c). The results obtained are used to form or complement file 
TauStatistics-NonlinearTrends.xls that is used by programs Testing_Convergence, Testing_Convergence 

Figure 4. Table PAIRWISE_SUMMARY generated by program Testing_Convergence (Total) 
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(Batch), and Testing_Convergence (Total). 

For possible comparisons by user, the programs can also estimate CDF of the Dickey-Fuller statistics for 
equation with constant (4), with constant and trend, yt = yt–1 +  + t + t, and with constant and 
quadratic trend, yt = yt–1 +  + t + t2 + t.  

Arguments. Arguments of the programs may follow in any order. The only optional argument is DF. If the 
workfile already exists on disc (when the execution of a program is continued after some break), only the 
filename should be specified (then keyword file= may be omitted).  

The programs use the following arguments (keywords are in bold; [...] means an optional part of 
argument; | means a choice, i.e. ‘or’; except for the filename, no blanks are tolerated within arguments): 

file=[<path>]<file name> is the workfile name (if there are blanks in the path or/and file name, enclose 
the full name in quotes, e.g., file=“d:\my path\my file.wf1”); 

T=<number> is the sample size; 
N=<number> is the number of replications; 
DF=<yes | no> is the mode of estimating the Dickey-Fuller distributions; ‘yes’ means that they must be 

estimated, and ‘no’ means no estimating. By default (if this argument is omitted), DF=no. 

Examples. Arguments 
file=50 DF=no T=50 N=200000 

imply that the CDF of -statistic for a model (3) will be estimated for sample of size 50, using 200,000 
replications; no Dickey-Fuller distributions will be estimated. The results will be saved to a new EViews 
workfile named 50.wf1. 

If you specify 
file="test 1" N=10000 T=100 DF=yes    

then the program estimates CDF of -statistic for sample of size 100; in doing so, the program uses 10,000 
replications. It also estimates the Dickey-Fuller test statistics, and stores results in file test 1.wf1. 

Specification 
file="D:\Projects\UR statistics.wf1" 

means that the file UR statistics.wf1 already exists on disk and contains incomplete work on estimation 
(parameters of estimation as well as the number of replications performed being stored in this file); the 
program will continue the estimation until reaches N specified at the very first start of this work. 

Source data. The programs do not need source data.  

Execution. At first, the programs checks arguments specified, halting the program in the case of error and 
reporting the error in the status line. Then the specified number (N) of replications is performed. In each 
replication, the programs generate {t}t=1,…,T ~ iid N(0,1) and construct a random walk yt = yt-1 + t ( t = 2, 
…, T) with y1 = 0. Then a relevant version of equation (3) is estimated with the use of essentially the same 
algorithm as described in Section 3.1 (if there is argument DF=yes, the programs also estimate the 
Dickey-Fuller test equations), and store the obtained value(s) of the test statistic(s), t-ratio of . While 
executing, the programs display the current number of replication and the estimated time left to complete 
the work in the status line. Having reached the specified number of replications, the programs compute 
CDF(s), using 1000 quantiles plus one more for probability 0.  

Note that the programs do not check accordance between the numbers of quantiles and replications. Thus, 
having specified a small number of replications, you can obtain unsatisfactory results. Given that the 
number of the distribution quantiles equals 1001, the number of replications should be no less than 
10,000.  
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It may happen that you make a mistake in arguments, while formally they are correct. In order that you 
can check correctness of your parameters, the programs show table Description that contains 
interpreted values of parameters (see Figure 5). When you find a mistake, you can halt the program 
(pushing F1 or Esc), and rerun it with correct arguments. If the program has already saved its results on 
disc (i.e., if it has worked more than 30 minutes), delete this file from disc. 

The programs can take much time to execute, several hours or even days, depending on a specified 
number of replications, sample size, as well as on the power of computer, operating system, and version of 
EViews. Therefore, the programs save the EViews workfile with results obtained every 30 minutes. Thus, 
if some problem occurs with your computer, you lose, at the worst, a half-hour work. To continue the 
work, start the program with the name of the workfile with the incomplete work as a sole argument. You 
may do the work in parts yourself. Push F1 or Esc key to halt the program and save the relevant workfile 
to disc. You can continue the interrupted work at any time as above.  

Results. The programs generate and save to disc an EViews workfile with a user-specified name. The 
main results are contained in the 1001  2 matrix cdf_t_nlt which is the CDF of the unit root test 
statistic for a relevant equation and specified sample size. The first column of this matrix is p-values from 
0 through 1 with increment 0.001; the second column is values of the test statistic for the corresponding p-
values.  

If the estimation of the Dickey-Fuller statistics is specified, three additional 1001  2 matrices 
cdf_df_c, cdf_df_t, and cdf_df_t2 with CDFs of these statistics (for the Dickey-Fiuller equation 
with constant, trend, and quadratic trend, respectively) are generated. They can be used, e.g., to compare a 
CDF of   for a nonlinear model with the CDFs of the Dickey-Fuller statistics. 

Until a program completes, it saves in the workfile additional objects that are necessary to continue the 
work if it has been interrupted. Do not remove or change these objects! 

The programs also save raw results, i.e. all N estimated t-ratios of , in vector t_nlt (if DF=yes is 
specified, the programs create similar vectors t_df_c, t_df_t, and t_df_t2). They may prove useful 
for some analytical purposes, e.g., to plot the probability density function of a statistic. 

The programs put on the 
screen and save table 
Description. It reports 
conditions of a given 
estimation, namely, the sample 
size and number of replications 
(if the work is not completed, 
the number of replications 
done is reported as well). 
Besides, it reports the time 
when program has started and 
finished, and elapsed time, as 
well as the list of arguments as 
they have been specified. 
Figure 5 shows an example. 

When the file of CDFs, TauStatistics-NonlinearTrends.xls, is being created, copy the first column of 
matrix cdf_t_nlt and paste it starting from a relevant cell of the first column in a necessary sheet (Log-

exp, or Exp, or Fract) of the file; see Section 5. Then copy the second column of matrix cdf_t_nlt and 
paste it from a relevant cell of the column for a given sample size in a necessary sheet of the file. You also 

Figure 5. Table Description reported by program CDF of UR statistics with 
Log-exponential trend 
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have to input the sample size, if it is not indicated. To copy, open the matrix and highlight cells in a 
column to be copied, from the first to the last one (and not the entire column!), press Ctrl+C, and choose 
option “Unformatted - Copy numbers at highest precision.” To paste, open the 
necessary sheet of TauStatistics-NonlinearTrends.xls, locate cursor at a required position (line 7 and a 
proper column) and press Ctrl+V or click button Paste in the Excel menu. If you modify an existing file 
TauStatistics-NonlinearTrends.xls, you need to copy and paste only the second column of cdf_t_nlt.  
 

5. The file of the unit root test statistics 

This is an Excel file having a fixed name TauStatistics-NonlinearTrends.xls. It contains cumulative 
distribution functions of the unit root test statistics, , for equations (3a), (3b), and (3c) for different 
sample sizes. The data are obtained with the use of programs CDF of UR statistics with ... trend. This file 
is used by programs Testing_Convergence, Testing_Convergence (Batch), and Testing_Convergence 
(Total)  to find p-values of the unit root tests. 

Note that these programs use the file with extension .xls, and are not able to work with the newer format 
.xlsx.  

The CDFs are stored in sheets named Log-exp, Exp, and Fract intended for model (3a), (3b), and (3c), 
respectively. (Other sheets with arbitrary information can be included in the file). Figure 6 shows an 
example. The data used by the programs are in black print. The blue font marks optional comments. You 
may insert your own comments and store other information in this sheet outside the statistic block. Graphs 
are also allowable. 

The structure of 
these sheets is 
rigid. Lines 6 
through 1007 
contain data on 
CDFs (while 
other lines can 
contain arbitrary 
information, e.g., 
explanations, 
titles, etc.). 
Column A, lines 
7 through 1007, 
contain p-values 
from 0 through 1 
with increment 
0.001. (Cell A6 
may contain 
arbitrary information.) Further columns contain values of ; a value in a given line corresponds to the 
same line of column A. Each column corresponds to some sample size which is placed in line 6 of this 
column. Such columns should be arranged in ascending sample sizes; no empty columns are permitted. 

Note that the programs that use this file do not entirely check the validity of its format (the order of 
sample sizes, number of rows, etc.). Therefore be careful when modifying the file. 

 

Figure 6. Example of content of TauStatistics-NonlinearTrends.xls
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