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INSTRUCTIONS TO THE PROGRAM OF ESTIMATING TAR 

Developed by Konstantin Gluschenko 
(the very first version of the program was written by Peter Rostovtsev) 

glu@nsu.ru 
http://econom.nsu.ru/users/gluschenko 

Version: 09.2005 

0. Introduction 
This program estimates threshold autoregressions (TAR), using the Microsoft Excel environment. 
The program is organized as an Excel macro titled TARmodel. The program is written in VBA 
(Visual Basic for Applications). 

The program is licensed to be available to users to download, copy, use, and modify (except for a 
commercial use). I hope that in doing so you will acknowledge me as the original creator.  

To see or modify the source code of the program, use the Excel main menu: Tools → Macro → Macros 
→ Edit. 
 

1. Algorithm 
The model under consideration is 
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         (t = 1, …, T),      

where {yt}t=0,…,T  is a time series, ∆ is the first difference operator (∆yt ≡ yt – yt-1),  and ε(.)t are 
regression residuals. Parameters to be estimated are λ(out) and λ(in), the autoregression coefficients 
(note that the estimate of λ(in) is generally of no interest), and c(+) ans c(–), the upper and lower 
threshold, respectively. Restriction λ(in) = 0 can be imposed, implying the process within the band 
[c(–), c(+)] to be a pure random walk. 

Thresholds c are estimated subject to W ≤ t(out)/(T+1) ≤ 1 – W (similarly for t(in)), where W is a (user-
)specified  window, W ≤ 0.5, t(out) is the number of observations such that yt ∉ [c(–), c(+)], and t(in) 
relates to yt ∈ [c(–), c(+)]; t(out) + t(in) = T+1. Following Andrews (1993), the window would be not less 
than 0.15, that is, both parts of the series contain not less than 15% of observations. However, the 
decision as to the value of W should be made depending on the size of the analyzed series. (Having 
short series, it is reasonable to widen the window; long series allow decreasing W.) 

For discussion of economic and econometric meaning of this model, see the literature, e.g., Obstfeld 
and Taylor (1997a, b), Gluschenko (2004), etc. (Commonly, yt is a price/price level differential 
between two locations, i.e., yt = ln(prt/pst), where pit is a price/price level in location i.) 

Testing for the threshold effect is, in fact, a specification test of TAR vs. AR. That is, the hypothesis 
to be tested is H0: the data generating process is AR(1) with parameter λ0, ∆yt =     λ0yt–1+ εt  (t = 1, 
…, T), against the alternative Ha: the process is TAR with parameters λ(out), λ(in), and c.  

The program uses the estimation and testing method put forward by Obstfeld and Taylor (1997a, b) 
in their Appendix A, slightly modifying it. Three modifications are made: (a) Instead of fixed W = 
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0.1, the window can have an arbitrary value from [0, 0.5]. (b) The step of the grid search is the 
difference between neighboring values of the observations rather than any fixed value (e.g., 0.001). 
(c) While the common practice is the use of symmetric thresholds, c(–) = –c(+), these are asymmetric, 
though related by the relationship c(–) = ln(2 – exp(c(+))); for motivation, see Gluschenko (2004), 
Appendix A. (It worth noting that yt is deemed to be logarithm.)  

To estimate and test TAR, a best-fit grid-search on the threshold parameter c is used. The objective 
function is the log ratio of the estimated likelihood function of the TAR and that of the AR(1),     
LLR = LTAR – LAR, which is maximized. In turn, 
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where O ={t: yt–1 ∉ [c(–), c(+)]}, and I ={t: yt–1 ∈ [c(–), c(+)]}. 

The procedure of estimating is as follows. 

1. Estimate AR(1) by OLS, obtaining 0λ̂  and σ̂ , and calculating ARL̂ . 

2. For each t compute ct = yt if  yt > 0, or ct = ln(2 – exp( yt)) if  yt < 0. Sort {ct} in ascending order, 
obtaining {ck}. Compute k0 = [W(T – 1)] + 1 and k1= T – k0. (Recall that W is the window; [x] 
means here the integer part of x.) 

3.  For each k = k0,…,k1: compute c(+)k = ck  and c(–)k = ln(2 – exp(ck)); construct sets Ok ={t: yt–1 ∉ 
[c(–)k, c(+)k]} and Ik ={t: yt–1 ∈ [c(–)k, c(+)k]}; estimate ∆yt = λ(out)kyt–1+ ε(out)t  (t ∈ Ok) and ∆yt = λ(in)kyt–

1+ ε(in)t  (t ∈ Ik) by OLS; compute LLRk. 

4. Take k* = argmaxk(LLRk) and LLR* = LLRk*. Take )(ˆ outλ = λ(out)k*, )(ˆ inλ = λ(in) k*, and ĉ  = ck*.  

5.  Estimate p-value of LLR, using a model-based bootstrap to obtain the distribution of the LLR 
statistic under the null hypothesis. The procedure is as follows. In each replication i (i = 1,…,N),     
T + 50 random values are generated, )()(

50 ,..., i
T

i εε− , )ˆ,0(...~ 2)( σε Ndiii
t . Then a simulated time series 

is generated as )()(
1

)( )1ˆ( i
t

i
t

i
t yy ε++λ= − , t = –50,…,T and 0)(

51 =−
iy , discarding the first 50 “observations” 

to avoid an initial value bias. The AR and TAR models are estimated over this time series like in 
steps 1 through 4, so yielding a realization of LLR(i). The number of realizations such that LLR(i) > 
LLR* related to the number of replications, N, is the p-value of the LLR*, i.e., the probability to 
accidentally obtain a value of LLR greater than LLR*, provided that the null hypothesis holds. 

 

2. The input data 
The program uses the input data from an Excel sheet. It need not be in the same Excel file that 
contains the program; the only condition is that the latter should be opened in parallel with the file 
containing the data to be processed.  

A time series should be organized as a column vector; that is, a single time series is set to a column 
of an Excel sheet, the number of rows equaling the sample size (T+1), and the order of rows 
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corresponding the order of periods, t. The program can process an arbitrary set of time series with 
the same sample size in one run. The series in the set can be located horizontally (in “series 
columns”) and/or vertically (in “tiers”). The series should not be adjacent; the program skips empty 
series (“gaps”). However, vertical gaps (empty tiers) should have the same length as the actual series 
(i.e., the number of rows in an empty tier should equal the sample size).  

The series should not occupy the first row (row 1) and the first column (column A); identifiers 
(names, codes, etc.) are placed in these row and column. Row 1 contains identifiers of series 
columns; and column A contains identifiers of tiers in the first row of each tier. The beginning of the 
data range (the rectangle of an Excel sheet that contains series to be processed) can be shifted from 
the first row of the sheet by an arbitrary number of rows; the same is valid for columns.  

The reason for such an organization of data is that the program has been originally developed to 
process sets of pairwise price differentials across locations. Figure 1 demonstrates an example of 
organization of such a data. 

 

 
 

Figure 1. An example of organization of data (each gray rectangle represents a time series). 

Any subset of series, which falls into a rectangle range, can be chosen to be one-run processed. For 
example, four series of prices related to the cross-country mean will be analyzed if the range 
H3:H22 is chosen; provided that the range is D8:F22, six pairwise series will be processed. All 
displayed series are processed with the range D3:H22; the only series {PUK-Ge,t} will be processed, 
given the range of E18:E22. 

It is possible to estimate TAR over a part of a series rather than over the whole series. To do so, it 
needs to choose a range covering the processed part of the series. For example, specifying the range 
H9:H12, the estimation involves {PUK,t}over 2002 to 2005; the range H8:H11 yields the estimation 
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without recent data; and the range H9:H11 provides estimates over the middle part of {PUK,t}, 
excluding 2001 and 2005. Such estimations can be performed across a number of series in one run, 
but these obviously can be only series from the same tier. For example, the range D14:H17 specifies 
estimation for three series {PUS-Fr,t}, {PUK-Fr,t}, and {PFr,t} without the initial year. However, to 
obtain estimates for all four series involving France, one more run is needed: that with the range 
F19:F22. 

To specify series to be processed, a relevant series or a set of series can be highlighted before 
starting the program. Figure 2 provides an example. In this example, the range D3:I17 is 
highlighted. Then six series will be processed; omitted are series that involve Germany. 

 

 
 

Figure 2. Specifying time series to be processed in one run. 
 
An alternative way is to specify an Excel sheet range (that contains the data to be processed) in the 
dialog box of the program; see below. 
 

3. Starting the program 
With the use of the Excel main menu, the program is called by the sequence Tools → Macro → Macros 
→ Run. (If other macros are active, highlight TARmodel before clicking Run). An alternative way is to 
press <Ctrl>t. After that the dialog box of the program appears, as displayed in Figure 3. 

At its appearance, the dialog box contains default settings. You may change all or some of the 
settings. The elements of the dialog box are as follows. 

Input range specifies the Excel sheet range that contains series to be processed. By default, this is the 
range that has been being highlighted before starting the program. If there is no a highlighted 
range, the address of the active sell appears. Then you should manually input coordinates of the 
series range. You may also specify a different range instead of the highlighted one. 

Sample size specifies the length of a single series (T+1). By default, it is equal to the number of 
rows in the highlighted range. (It there is no such a range, the value in this box is 1.) If the range 
is manually specified or changed, the actual sample size should be input either directly or with 
the use of the spin buttons at the right of this box. The default sample size should also be changed 
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to the actual value when there is more than one tier in the input range. (In the example in Figure 
3, the sample size should be changed to 5.) 

 

 
 

Figure 3. Dialog box of the program. 
 

Window specify the value of W (see section 1), that is, the minimal portion of the series that may be 
beyond/within the band [c(–), c(+)]. The default value is 0.15. 

Replications specifies the number of Monte Carlo experiments, N, while estimating the p-value of 
LLR. The default value is 1,000. The p-value is rather sensitive to N; and so, it is desirable to 
have N as large as possible. But on the other hand, it is the value of N that determinates the 
program run time. Thus, the choice would depend on the number of processed series. Anyway, 
N=1,000 seems not enough; I would recommend at least 10,000.  

Output to specifies the upper left cell of the output table. By default, the output table starts from the 
same row as the processed series; its starting column is shifted by one column to the right from 
the end of the input range. You may specify any different location, provided that the output range 
does not overlap the input range. 

Estimation mode contains three option buttons. The default option is lambda-in=0, implying that the 
estimations will be performed subject to restriction λ(in) = 0. This restriction is removed with the 
option Estimate lambda-in. At last, only AR(1) model is estimated instead of both AR(1) and TAR, 
if the option AR(1) only is chosen. 

The program checks the accuracy of settings while inputting them. When the setting in the dialog box are 
proper, click OK. Then the dialog box becomes elongated, as Figure 4 demonstrates. Its additional part 
displays the structure of the input range, and provides a possibility to correct the settings. 
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Figure 4. Expanded dialog box. 
 

Figure 4 uses the same example like Figure 3. As seen, the value of W (window) is changed as well 
as the sample size. Now the program understands that series are located both one after another and 
one below another, suggesting that there are 18 series in the input range (including empty ones that 
will be skipped while running). 

You may return to specifying the settings, clicking Correct; or you may start estimating, clicking Go on. 

While the program is working, you can exit at any time by pressing Esc. 
 

4. Output 
Provided that a set of time series is specified, the series are processed from left to right and top-
down, empty series being skipped. An example of the output table is presented in Figure 5. 
  

 
 

Figure 5. Example of the output table. 
 
The items in the output table are as follows. 
N exp displays a current number of the Monte Carlo experiment, i, while processing a given series; 

after completing the estimation, this column contains the total number of replications, N.   

r and s are identifiers of the series column and tier. For example, if all the 10 series from Figure 1 
would be processed in one run (specifying the input range as D3:H22), these columns of the 
output table look like in Figure 5. 



 7

p(unit root) is always empty. This column is destined for p-values of a unit root test, the values being 
obtained by user with the use of any other program (e.g., MacKinnon’s (1996) program, EViews, etc.). 

AR lambda is the estimate of λ0. 

s.d. is the standard deviation of λ0. 

t-stat is the value of t-statistic for the estimate of λ0. 

AR T-half means the half-life in the AR(1) model; it is computed as ln0.5/ln(1+λ0); its unit of 
measure coincides with the frequency of the corresponding time series (months, quarters, etc.). 

LLR is the estimated value of the LLR statistic for TAR. 

p(LLR) is the p-value of the estimated LLR. 

TAR lambda-out is the estimate of λ(out).  

s.d. is the standard deviation of λ(out). 

t-stat is the value of t-statistic for the estimate of λ(out). 

TAR T-half means the half-life in the TAR model; it is computed as ln0.5/ln(1+λ(out)). 

c(–1) is a value of c that is the nearest to the estimate of c. Since the threshold grid is discrete, we do 
not know the exact point of the maximum of LLR. Thus, a true value of с lies somewhere 
between the estimate of с and the neighboring nod of the grid. The value in this column gives an 
idea of how large can be inaccuracy in the estimate of с. 

C(–1), % is the percentage of c(–1); it is calculated as (ec(–1) – 1)⋅100. (Recall that {yt} are deemed to 
be logarithms.) 

c is the estimate of с (more exactly, of c(+)). 

C, % is the percentage of c; it is calculated as (ec – 1)⋅100. 

t out is t(out), that is, the number of observations such that yt ∉ [c(–), c(+)]. 

t in is t(in), that is, the number of observations such that yt ∈ [c(–), c(+)]. 

TAR lambda-in is the estimate of λ(in); if the option is lambda-in=0, the value in this column is always 0. 

s.d. is the standard deviation of λ(in). 

t-stat is a value of t-statistic for the estimate of λ(in); if the option is lambda-in=0, the value in this 
column is always 0. 
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